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(1)-(4), the editor omits the details.)

Aage Bondesen showed that for p 4+ g <1 the inradius of the triangle with vertices
0,0),(p,1),(1, q) is less than that of the triangle with vertices (0,0), (1,0) and (p + g¢,1). Jordi
Dou investigated the case in which a rectangle replaces the square. Victor Pambuccian points out
that this problem is automatically solvable by the Tarski algorithm (see, e.g., A. Seidenberg, A new
decision method for elementary algebra, Ann. Math., 60 (1954) 366-369). On the other hand, the
editor wishes to add that (a) problems at this level or higher have almost never been thus solved in
real time, (b) there seems almost no hope that the algorithm will produce proofs with intuitive
appeal (at least for humans), and (c) the algorithm cannot, even in principle, generalize results to
n dimensions.

Also solved by Aage Bondesen (Denmark), Jordi Dou (Spain), and Esther Szekeres (Australia).
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Galois was a Frenchman who made deep and important contributions to mathematics at the
age of 17, who nevertheless failed the entrance examinations for the Ecole Polytechnique, who was
imprisoned at the age of 19 for political activities, and who died aged 20 in 1832, shot in an early
morning duel. So romantic a figure has naturally attracted a great deal of posthumous attention.
Biographers have done their best, but a person who dies young does not leave masses of
documentary evidence behind and most of what has been written about Galois the man is more
journalistic than historical; there are many theories but few facts. For different reasons Galois the
mathematician is hardly better understood. His discoveries are so advanced that they are far
beyond the mathematical competence of trained historians; and few mathematicians have the
training in historical techniques or the taste for historical research that a study of his mathematics
would require.

Galois theory, which is what the theory of equations was changed into by Galois’ work, is one
of the three great contributions that he made to mathematics. The other two were the theory of
‘Galois imaginaries’, which is, in essence, the same as the modern theory of finite fields, and the
theory of groups, which emerged from his theory of equations and from Cauchy’s papers of 1845
on the theory of substitutions. The theory of ‘Galois imaginaries’ was published when Galois was
18 years old in his paper ‘Sur la théorie des nombres’. His work on theory of equations was first
submitted to the Academy in 1829. It was either lost or withdrawn and a new paper was
submitted in February 1830 for the grand prix de mathématiques. This second version was lost
amongst the papers of Fourier. A third version entitled ‘Mémoire sur les conditions de résolubilité
des équations par radicaux’ was submitted to the Academy in January 1831, was read by Poisson
(and possibly also Lacroix), was rejected in July that year and returned to its author. This is the
manuscript, the so-called premier mémoire, that was retrieved by his friend Auguste Chevalier
after Galois’ death, that Liouville first published in 1846, and which contains the original
exposition of Galois theory.

At the beginning of the last century the central problem of the theory of equations was to find
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a formula that would express a root of a polynomial equation

x"+ax" '+ +a, ;x> +a,_1x+a,=0
in terms of the coefficients aj,..., a,_5, a,_1, a,. It was hoped, and indeed required, that such a
formula would be algebraic: that is to say, it would involve no operations other than +, —, X,

=, and 1\7—— for various values of k. What was wanted were analogues of the formulae

x= —a, and x=%(—a1 + \/alz——4a2)

that solve the problem in case n = 1 or n = 2, respectively. For n = 3 and n = 4 such solutions
had been known for over 250 years. In 1770-71 Lagrange appears to have come round to the idea
that it might, just possibly, be the case that no such formula exists when » > 5. From 1799 to
1814 Paolo Ruffini, an Italian savant, published books and papers describing his proof of this
impossibility, but his work was long, confused and confusing, and it had little influence on his
contemporaries and successors. There were still many mathematicians who believed that the
desired formulae should exist. Indeed both Abel in 1823 and Galois in 1828 believed that they had
solved the quintic equation before they found their own errors and went on to elucidate the real
state of affairs.

What Abel did was to prove in 1824 that there is no formula of the required kind for equations
of degree 5. Later he amplified his proof and extended it to cover explicitly equations of any
degree n > 5. It is a common myth that Abel did this by proving the simplicity of the alternating
groups A4, for n > 5. He did not: the idea of a group did not yet exist and Abel did not invent it.
There was no group theory needed for Abel’s proof. What he used was a certain fact about the
possibilities for the number of different functions that can be obtained from a given function of »
variables by permuting them amongst themselves; and this fact, although it has a natural and
obvious group-theoretical setting, had been proved by Cauchy, in a paper published in 1815, by
simple calculations with permutations.

It was left to Galois, almost certainly in 1829, to discover the need for groups in the theory of
equations (though Galois himself was later aware that Abel, who died in 1829, had probably been
thinking along similar lines about a year earlier). In the premier mémoire he treats equations with
numerical coefficients and addresses a much more delicate question than Abel had answered. The
question is, can a solution of such an equation be obtained by computing with known quantities,
using addition, subtraction, multiplication, division and extraction of roots as the only allowable
arithmetical operations; that is to say, does there exist a solution in terms of radicals? The answer
is sometimes yes (as in the case of the equation x*> — 2 = 0), and sometimes no (if by “known
quantities” we mean rational numbers, then the equation x*> — 4x + 2 = 0 is an example). Galois
discovered that there is a group naturally attached to each equation, and he was able to analyse
how that group changed when the domain of known quantities was extended and to produce a
necessary and sufficient condition, expressed in group-theoretic terms, for the solubility of the
given equation by radicals.

The premier mémoire has never been an easy paper to understand. It defeated Poisson in 1831.
And the early exegetes, Liouville, Betti, Serret,..., had, in effect, to re-work the theory for
themselves, though of course following (and acknowledging) the very explicit indications that
Galois gives in his sequence of lemmas and propositions. The difficulty lies in his exposition.
Globally he organises the theory very beautifully and straightforwardly, but locally his explana-
tions show his extraordinary impatience. The whole paper is really no more than a sketch. The
idea of a group, for example, is one of Galois’ great innovations, but one learns what he has in
mind only by reading the proof of his Proposition I and working backwards. It is true that at the
end of the collection of definitions with which the published versions of the premier memoire
begin there is a brief passage setting out his terminology for permutations, substitutions and
groups. But the explanation is exiguous in the extreme. Moreover, this is a late insertion that was
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added on that dreadful night before the fatal duel. A year earlier, when the manuscript had been
read by the Academy referees, it had contained no explanation of what a group was supposed to
be.

The unfavourable report by those referees, Poisson and Lacroix (though it seems doubtful if
Lacroix had much to do with it), may be read in the published Proces-verbaux of the Académie
des Sciences, Séance du 4 Juillet 1831. Poisson and Lacroix criticise the work on two very solid

grounds. One of these is, in general terms, the criticism that I have made above, expressed like
this:

Quoiqu'’il en soit, nous avons fait tous nos efforts pour comprendre la démonstration de M.
Galois. Ses raisonnements ne sont ni assez clairs, ni assez développés pour que nous ayons
pu juger de leur exactitude,... .

[Be that as it may, we have made every effort to understand Mr Galois’ proof. His reasoning
is neither clear enough nor far enough developed for us to have been able to judge its
correctness,. .. .]

The referees’ other criticism is quite different. On the title page of his manuscript Galois had
written

On trouvera ici une condition générale a laquelle satisfait toute équation soluble
par radicaux, et qui réciproquement assure leur résolubilité. On en fait ’application seule-
ment aux équations dont le degré est un nombre premier. Voici le théoréme donné par notre
Analyse:

Pour qu’une équation de degré premier, qui n’a pas de diviseurs commensurables, soit
soluble par radicaux, il faut et il suffit que toutes les racines soient des fonctions rationnelles
de deux quelconques d’entre elles.

[Here will be found a general condition that is satisfied by all equations soluble by radicals,
and which conversely ensures their solubility. Just one application is given, to equations of
prime degree. Here is the theorem given by our analysis:

In order that an equation of prime degree, which has no rational divisors, shall be soluble
by radicals it is necessary and sufficient that all the roots should be rational functions of any
two of them.]

Poisson and Lacroix reacted as follows:

...en admettant comme vraie la proposition de M. Galois, on n’en serait guére plus avancé
pour savoir si une équation donnée dont le degré est un nombre premier est résolue ou non
par des radicaux, puisqu’il faudrait d’abord s’assurer si cette équation est irréductible, et
ensuite si 'une de ses racines peut s’exprimer en fonction rationnelle de deux autres. La
condition de résolubilité, si elle existe, devrait &tre un caractére extérieur que l'on plt
vérifier a I'inspection des coefficients d’une équation donnée, ou, tout au plus, en résolvant
d’autres équations d’un degré moins élevé que celui de la proposée.

[...accepting Mr Galois’ proposition as true, one is hardly further forward towards
knowing if a given equation whose degree is a prime number is soluble by radicals or not,
because one must first decide whether this equation is irreducible and then whether one of
its roots may be expressed as a rational function of two others. The condition for solubility,
if it exists, should be an external characteristic that one can verify by inspection of the
coefficients of the given equation, or at least, by solving other equations of lower degree
than the one proposed.]

They concluded their report by advising that, since the author said that his main proposition was
part of a more general theory, and since it was often the case that a complete theory was easier to
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understand than isolated parts of it, one should wait until the whole of the author’s work was
available before forming a final opinion; but as it then was, the part that had been submitted was
not in a suitable state that they could recommend it for the Academy’s approval.

With hindsight one may feel that this report was wrong. But I cannot think so: it seems to me
to be a model of good refereeing. Can any of us be sure that in an analogous situation today we
would react differently? I doubt it: it is an admirable report, sympathetic but firm. All that is
wrong with it is that it deals with the work of an exceptionally brilliant and awkward man. Galois
had no research supervisor who might have shown him how his discoveries should be properly
written up. Besides, Galois was not a man who took advice easily. Another young mathematician
might have taken the criticism to heart, re-written his work, published it and become famous.
Galois took offence, returned to political agitation, died young and became famous.

After Galois’ principal works were published by Liouville in 1846 his theory as it applied to
polynomial equations was rapidly understood (understanding of the theory of groups beyond the
little that had direct application to the study of equations grew rather more slowly), and it has
been taught and learned with enthusiasm and pleasure ever since. Over the years the outward
form of Galois theory has changed enormously. At the hands of Dedekind, Emmy Noether, Emil
Artin and others the subject has moved away from its very concrete origins in the theory of
equations and has metamorphosed into that part of abstract algebra that deals with fields and
their automorphism groups. Today’s student will find that the premier mémoire looks very
different from Galois theory as it is to be found in modern texts such as Herstein’s Topics in
algebra (Chapter 5) or Stewart’s Galois theory.

The book Galois theory by Harold Edwards is quite different from these. Like them it is an
excellent textbook suitable for advanced undergraduates, but it takes the student back to those
first few decades of the nineteenth century and returns to Galois’ original conception of the
subject. Notation is very similar to that of Lagrange and Galois; division of the text into short
sections numbered consecutively is true to the style of that time. The first thirty sections contain
an account of what had been done before Galois on cubic, quartic and cyclotomic equations and
on symmetric polynomials, with particular reference to the work of Newton, Lagrange and Gauss.
The remainder of the book is, in effect, a very much expanded version of the premier mémoire put
into context and carefully explained. Edwards develops the theory in the form that Galois wrote it
except that every lemma and theorem is properly proved, every i is dotted and every ¢ is crossed.
Where Galois was impatient and obscure Edwards is extraordinarily patient and clear. Even the
question of how Galois groups may be calculated and how in principle, if not in practice, one may
decide whether or not a given equation is soluble by radicals, is carefully and extensively treated
(by methods due to Kronecker fifty years after Galois’ death). This is, at last, a satisfactory and
decisive response to the referees’ two criticisms of Galois” work.

In the preface Edwards writes that he wanted to explain the theory “in terms close enough to
Galois’ own to make his memoir accessible to the reader”. It is an admirable intention and one in
which he will, I believe, be found to have fully succeeded. Nevertheless, it is perhaps a slightly
dangerous one. Galois’ own exposition is so sketchy that one might complete his arguments in
several different ways and one can never be sure quite how much importance he himself attached
to this point or that. It is no surprise therefore that I find myself cheerfully disagreeing with
Harold Edwards on some details. Here are two examples.

(1) I see no historical justificaion for singling out the concept of “Galois resolvent” and giving
it that name. All that Galois uses is the existence of a rational function ¢ of the roots a, b, c, ...
of his polynomial equation f(x) = 0 which has the property that each root can be expressed as a
function of ¢. (In modern terms ¢ is a generator of the splitting field of f(x) = 0 and its existence
is guaranteed by the “Theorem of the primitive element.” This is what Edwards [p. 35] calls a
“resolvent” of the equation f(x) = 0; what he calls a “Galois resolvent” is a very special type of
“resolvent”.) Galois is very offhand in his proof of the existence of such functions; in his paper
‘Sur la théorie des nombres’ that was published in 1830 he dismisses the existence as being clear.
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Furthermore, Galois himself acknowledges that the existence of such functions ¢ was known to
Abel before him.

(2) The proof of Lemme III is a splendidly controversial matter. Poisson was unable to
understand it and made a note on the manuscript to say so, but he accepted that the lemma was
true by a result of Lagrange. Galois, incensed, appended “On jugera” to Poisson’s note. Edwards
feels that Galois was right and he gives a line of argument that undoubtedly completes the proof.
But to do this he has to read very much more than is there into what Galois actually wrote, and I
find his justification rather far-fetched. On balance I side with Poisson: it was up to Galois to be
both clear and correct, whereas what he wrote is far too easily misunderstood.

I have other small criticisms of the book. For example, although it is primarily a contribution
to mathematical exposition, not to the history of mathematics, I would have liked to see a
paragraph or two about Abel’s contributions and his influence (or lack of it) on Galois. Then
again, the explanation of what is meant by solubility of cyclotomic equations by radicals is not
entirely happy: elsewhere ‘solution by radicals’ involves using roots of equations x? — k = 0, so
why is a root of the equation x?~! + x?~2 + --. +x + 1 = 0 not immediately acceptable as a
radical in virtue of the fact that it is a root of x? — 1 = 0? But all that these criticisms prove is
that the author is right when he advises his students to ‘Read the masters.” The reader must form
his own judgment after reading what Galois and Harold Edwards themselves have written. That is
one of the many points on which I am in complete agreement with him.

At the end of his famous testamentary letter, written on the night before the duel, Galois
commends his manuscripts to Chevalier’s care and writes

il se trouvera, j’espére, des gens qui trouveront leur profit 4 déchiffrer tout ce ghchis.
[there will, I hope, be people who will find it profitable to decipher all this mess.]

With his latest book Harold Edwards joins the select band of these gens. He has added another
significant item to the new genre of mathematical publication that he created with his two earlier
books The Riemann Zeta Function and Fermat’s Last Theorem. Just as Galois' paper
‘.. .résolubilite des équations par radicaux’ is very aptly named, so Galois theory has an unusually
accurate title: this is not only a splendid textbook of that subject, but also an excellent
contribution to the study of Galois the mathematician.

Winning Ways for Your Mathematical Plays, Volumes I & II. By Elwyn R. Berlekamp, John H.
Conway, and Richard K. Guy. Academic Press, New York, 1982. Volume I, xxxi + 426 pp.;
Volume II, xxxi + 424 pp.

ROBERT CONNELLY
Department of Mathematics, Cornell University, Ithaca, New York 14853

“It’s only a game, like dying is only death.”—Tom Paxton

Imagine the following offhand conversation between two erudite mathematicians, Right and
Left, at a prestigious institution of higher learning, as they pick up their mail.

Left: “Wow! Look at this! A book that shows you how to win at Dots-and-Boxes!”
Right (somewhat bored): “Splendid. Now you can win against your seven-year-old.”

Left (unperturbed, but defiant): “Dots is a subtle game”.
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