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It would not do to close without touching on the personal qualities of the man we are honoring
today. Those of us who know Vic Klee well especially value his integrity, unpretentiousness and quiet
common sense; his friendliness, warmth and good humor; and his delight in a good joke and even a
bad pun. I'll give you just one example, in which I was personally involved. One day at the University
of Virginia, Vic came in briskly and out of the blue said to me, “Tru, do you have lots of hair on your
chest? Puzzled but unwary, I replied, “Only the usual amount, I guess. Why do you ask?”” Vic said,
“Oh, I was just wondering whether it would be appropriate to call you Hairy Truman!” Now that the
memory of that occasion has mellowed, it is a signal honor and pleasure for me to welcome Vic Klee,
on behalf of the Mathematical Association of America, to the ranks of those who have won and richly
deserved its Award for Distinguished Service to Mathematics.
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ERROR-CORRECTING CODES AND INVARIANT THEORY:
NEW APPLICATIONS OF A NINETEENTH-CENTURY TECHNIQUE

N. J. A. SLOANE

Abstract. An unfashionable nineteenth century technique, invariant theory, has recently been used to
study error-correcting codes. This technique is potentially of much wider application, is very powerful,
often produces startling results, and (not least) is fun to use.

I. INTRODUCTION
It will be best to begin with an example, showing how invariant theory is used to solve a typical
problem. Most of the undefined terms will be explained in later sections.

A. The problem. Associated with any error-correcting code is a polynomial called its weight
enumerafor W(x,y) (see Part II). For a certain class of codes this polynomial must satisfy two
equations:

Xty x—y\_
0 W ) = s ),
@ W5 iy) = W )

The problem we want to solve is to find all polynomials W(x, y) satisfying (1) and (2).

B. Invariants. Equation (1) says that W(x,y) is unchanged, or invariant, under the linear
transformation
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replace x by (x + y)/\/i,

T
replace y by (x—y)/\/z,

1 /1 1\/x
T:: lace <x> b —( )( )
rep y Y V2\1 -1 y

Similarly Eq. (2) says that W(x, y) is also invariant under the transformation

or, in matrix notation,

replace. x by x
T
replace y by iy

' X 1 O> <x>
T.: replace (y) by (0 i/ \y)

Of course W(x, y) must therefore be invariant under any combination T: T\T,, ITLT,... of
these transformations. It is not difficult to show (as we shall see in Section A of Part III) that the

matrices
1 <1 1) (1 O)
— and .
V2 \1 -1 0 i

when multiplied together in all possible ways produce a group ®, containing 192 matrices.
So our problem now says: find the polynomials W(x, y) which are invariant under all 192 matrices
in the group @,.

or

C. How many invariants? The first thing we want to know is how many invariants there are. This
isn’t too precise, because of course if f and g are invariants, so is any constant multiple cf and also
f+g f— g and the product fg. Also it is enough to study the homogeneous invariants (in which all
terms have the same degree).

So the right question to ask is: how many linearly independent, homogeneous invariants are there
of each degree d? Let’s call this number a..

A convenient way to handle the numbers ao, a4, 4., . . . is by combining them into a power series or
generating function

CD()()=a0+a1)t+a2)t2+

Conversely, if we know ®(1), the numbers a, can be recovered from the power series expansion of
D(r).

At this point we invoke a beautiful theorem of T. Molien, published in 1897 ([52], [14, p. 301], [51,
p. 259], [11, p. 110]):

TuroreMm 1. For any finite group & of complex m X m matrices, ®(X) is given by
D S N S
3 PN =167 &, FerT-AA)

where |® | is the number of matrices in ®, det stands for determinant, and I is a unit matrix. In words,
®(A) is the average, taken over all matrices A in the group, of the reciprocal of the polynomial
det(I - AA).

We call ®(A ) the Molien series of . The proof of this theorem is given in Section D of Part III.
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For our group ®,, from the matrices corresponding to I, Ty, T, ... we get

1 1 1 1 }
=— + 4 oeeet,
@) M) =19 {(1—A)2+1—A2 TERYES,
There are shortcuts, but it is quite feasible to work out the 192 terms directly (many are the same) and

add them. The result is a surprise: everything collapses to give

1
© PO T

D. Interpreting ®(\). The very simple form of (5) is trying to tell us something. Expanding in
powers of A, we have

D)= a0t aih +a:A’+ -+
(6) =(1+A8+A16+A24+.‘.)(1+A24+A48+‘..).

We can deduce one fact immediately: a, is zero unless d is a multiple of 8, i.e., the degree of a
homogeneous invariant must be a multiple of 8. (This is already a useful theorem in coding theory.)
But we can say more. The RHS of (6) is exactly what we would find if there were two “basic”
invariants, of degrees 8 and 24, such that all invariants are formed from sums and products of them.

This is because two invariants, 6, of degree 8, and ¢, of degree 24, would give rise to the following
invariants.

degree d invariants number a,

0 1 1

8 0 1

16 6° 1

) 24 6 2
32 6%, 8¢ 2

40 6°, 6%¢ 2

3

48 8°, 0°¢, ¢°

Provided all the products 0'¢’ are linearly independent — which is the same thing as saying that 6 and
¢ are algebraically independent—the numbers a, in (7) are exactly the coefficients in

T+ AR+ A+ 22X+ 20242004+ 31 %8+ -+
®) =LA+ A+ )1 +H A+ A%+ )

3 1
T(1=-A%H(A =A%y

which agrees with (5). So if we can find two algebraically independent invariants of degrees 8 and 24,
we shall have solved our problem. The answer will be that any invariant of this group is a polynomial
in 6 and ¢. We shall find 6 and ¢ in the next section.

Notice how the exponents 8 and 24 in the denominator of (5) led us to guess the degrees of the basic
invariants.

This behavior is typical, and is what makes the technique exciting to use. One starts with a group of
matrices ®, computes the complicated-looking sum shown in Eq. (3), and simplifies the result.
Everything miraculously collapses, leaving a final expression resembling Eq. (5) (although not always
quite so simple —the precise form of the final expression is given in Section E of Part III). This
expression then tells you the degrees of the basic invariants to look for.
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E. Finding the basic invariants. Finding the basic invariants is in general an easier problem than
finding ®(A). There are two methods.

(a) Finding invariants by averaging. This method uses the following simple result (which is proved
in Section B of Part II).

THEOREM 2. If f(X) = f(X1,- .., %m) is any polynomial in m variables, and & is a finite group of
m X m matrices, then

Fo=rg S, A=)

is an invariant, where A o f(x) denotes the polynomial obtained by applying the transformation A to
the variables in f.

Of course f(x) may be zero. We shall give an example of the use of this theorem below. But in our
present example the second method is easier to use.

(b) The indirect method, which is to use what we know about the problem to find invariants. In the
present example we are studying self-dual codes with weights divisible by 4 (defined in Section B of
Part II). Their weight enumerators satisfy Egs. (1) and (2). There are two famous codes in this class,
the extended Hamming code of length 8 and the extended Golay code of length 24 (codes Cs and Cs of
Part II). The weight enumerators of these codes are respectively

) 0=x%+14x"y* +y°
and
(10) @' =x™+759xy®+2576x 2y 2+ 759x %y 1O+ y*.

Since the Hamming and Golay codes are self-dual, and have weights divisible by 4, these two
polynomials must be invariant under Egs. (1) and (2) and hence under the group ®,. So we have found
the two basic invariants we were looking for. (It’s not difficult to verify that they are algebraically
independent.) Actually it is easier to work with

3 _ ’
(10a) o=1 42‘P = x*y -y

rather than with ¢’. So we have proved the following theorem, discovered by Gleason in 1970.
THEOREM 3a. Any invariant of the group ®, is a polynomial in 6 (Eq. (9)) and ¢ (Eq. (10a)).
This also gives us the solution to our original problem:

THEOREM 3b. Any polynomial which satisfies Eqs. (1) and (2) is a polynomial in 6 and ¢.
Finally, we have also obtained a very useful theorem about codes.

Tueorem 3c. (Gleason [26]) The weight enumerator of any self-dual code, with weights divisible by
4, is a polynomial in 6 and ¢.

Alternative proofs of this theorem are given in [9] and [12] (see also [4]). But the proof given here
seems to be the most informative, and the easiest to understand and to generalize.

F. An application. To show how powerful Theorem 3c is, we shall use it to find the weight
enumerator of the extended quadratic residue code of length 48 (the code Cs of Part II).

All we need to know about this code is that it is self-dual, and that the weight of any nonzero
codeword is a multiple of 4 and is at least 12 (i.e., this is a 5-error-correcting code). This implies that
the weight enumerator of the code, which is a homogeneous polynomial of degree 48, has the form

(11) Wx,y)=x®+Apx®y?+ -,
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The coefficients of x*’y, x*y? ..., x”’y'" are zero. Here A, is the unknown number of codewords of

weight 12. It is remarkable that, once we know Eq. (11), the weight enumerator is completely
determined by Th. 3c. For Th. 3c says that W(x, y) must be a polynomial in # and ¢. Since W(x, y) is
homogeneous of degree 48, 6 is homogeneous of degree 8, and ¢ is homogeneous of degree 24, this
polynomial must be a linear combination of 8°, 6%¢, and ¢*.

Thus Th. 3c says that

(12) W(x,y)=ac0°+ a,0%¢ + a,¢’

for some real numbers ao, a;, a.. Expanding Eq. (12) we have

W(x, y)=ao(x*®+84x*y*+2946x*y*+ - +)
(13 Fa(rty 38y )

+ax(x*yt =),

and equating coefficients in Eqgs. (11), (13) we get

ag = 1, a; = "‘84, a2=246.
Therefore W(x, y) is uniquely determined. When the values of a,, a,, a, are substituted in (12) it is
found that

W(x, y)=x"+17296x*°y > + 535095x 2y '®

(14) +3995376x % y** + 7681680x*y** + 3995376 x >y *

+535095x "y + 17296x 1y + y*,
Direct calculation of this weight enumerator would require finding the weight of each of the
2%~ 1.7x 107 codewords, a respectable job even for a computer.

Of course there is also a fair amount of algebra involved in the invariant theory method, although

in the preceding example it can be done by hand. The reader may find it helpful if we give a second
example, in which the algebra can be shown in full.

G. A very simple example. The weight enumerator of a self-dual code with symbols from the
field of q elements must satisfy the equation

s) W(x - (q\/(_; Dy x\;{) - W(x, y).

Problem: Find all polynomials which satisfy Eq. (15).
The solution proceeds as before. Equation (15) says that W(x, y) must be invariant under the

transformation
X X
T:relace()b A(),
3. Iep y y y
where
1 /1 g-1
16 A =——< )
(16) VAN

Now A= I,s0 W(x, y) must be invariant under the group ®, consisting of the two matrices I and A.
To find how many invariants there are, we compute the Molien series ®(A ) from Eq. (3). We find
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det(I—AI)=(1- )2,

det(I - AA) = det Aq ‘i =1-42
—‘\7(-1 1+—\/—2
17) @(A)=%(——(1_1A)2+—~1_1A2)
~ 1
T(1=A)(1-A%

which is even simpler than Eq. (5). Equation (17) suggests that there might be two basic invariants, of
degrees 1 and 2 (the exponents in the denominator). If algebraically independent invariants of degrees
1 and 2 can be found, say g and h, then Eq. (17) implies that any invariant of ®, is a polynomial in g
and h.

This time we shall use the first method (averaging) to find the basic invariants. Let us average x
over the group—i.e., apply Theorem 2 with f(x, y) = x. The matrix I leaves x unchanged, of course,
and the matrix A transforms x into (1/\/?1) (x + (g — 1)y). Therefore the average,

o)=Lt L (g
o=+ 7t a1

_ (Vg D{x +(Vg-1)y}
2Vyq ’

is an invariant. Of course any scalar multiple of f(x, y) is also an invariant, so we may divide by
(Vq+1)2Vq and take

(18) g=x+(Vq-1y

to be the basic invariant of degree 1. To get an invariant of degree 2 we average x” over the group,
obtaining

3 tter@-mr.

This can be cleaned up by subtracting ((q + 1)/2¢)g” (which of course is an invariant), and dividing by
a suitable constant. The result is

h=y@x-y)

the desired basic invariant of degree 2.
Finally, g and h must be shown to be algebraically independent: it must be shown that no sum of
the form

(19) 2 csg'h’, ¢y complex and not all zero,

ij
is identically zero when expanded in powers of x and y. This can be seen by looking at the leading

terms. (The leading term of a polynomial is the first one to be written down when using the natural
ordering illustrated in Eqgs. (9), (14), (18).) Thus the leading term of g is x, the leading term of 4 is xy,
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and the leading term of g'h’ is x'*/y’. Since distinct summands in Eq. (19) have distinct leading terms,
(19) can only add to zero if all the c; are zero. Therefore g and h are algebraically independent. So we
have proved:

THeOREM 4. Any invariant of the group ®,, or equivalently any polynomial satisfying (15), or
equivalently the weight enumerator of any self-dual code with symbols from GF(q), is a polynomial in
g=x+(Vgq-1yand h = y(x -y).

At this point the coding theorist will cry “Stop!”, and point out that a self-dual code must have
even length and so every term in the weight enumerator must have even degree. But in Theorem 4 g
has degree 1.

Thus we haven’t made use of everything we know about the code. W(x, y) must also be invariant

under the transformation
x X
replace < > b B( >,
P y y y

where B = < B (1] _?) = — L This rules out terms of odd degree. So W(x, y) is invariant under the
group @, generated by A and B, which consists of

LA -1 -A

The reader can easily work out that the new Molien series is

Po(1) = 3 {Bes () + Pos(~ 1)}

1 1 1
@0) =§{(1—A><1—A2>+(1+A)<1—A2>}
o1
Sa-a

There are now two basic invariants, both of degree 2 (matching the exponents in the denominator of
(20)), say g* and h, or the equivalent and slightly simpler pair g* = x>+ (¢ — 1)y*> and h = y(x — y).
Hence:

Treorem 5. ([41]) The weight enumerator of any self-dual code with symbols from the field of q
elements is a polynomial in g* and h.

The preceding argument enables us to give a short proof of a recent result of Leontjev.

CoroLLARY. (Leontjev [35]) The weight enumerator W(x,y) of a linear code over the field of g
elements has the property that

‘ W(x,y)W<X+(\q/—;l)y,x\;Zy>

is a polynomial in g* and h.

Proof. This product is clearly invariant under T; and — I, and so the result follows from the proof
of Th. 5. Q.E.D.

H. The general plan of attack. As these examples have illustrated, there are two stages in using
invariant theory to solve a problem.

Stage I: Convert the assumptions about the problem (e.g., the code) into algebraic constraints on
polynomials (e.g., weight enumerators).
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Stage II: Use invariant theory to find all possible polynomials satisfying these constraints.

J. Arrangement of the paper. Part I has been devoted to explication by example. Part II gives
the necessary background from coding theory, defines codes and weight enumerators, and explains
why they are important. Part III is the main section of the paper and gives a brief account of invariant
theory. Then Part IV gives further examples and illustrates more advanced techniques.

II. BACKGROUND FROM CODING THEORY

A. Definition of a code and examples. Imagine a noisy telegraph line from New York to
Boston, which transmits 0’s and 1’s. Usually when a 0 is sent from New York it is received as a 0 in
Boston, but occasionally a 0 is received as a 1. Similarly a 1 is occasionally received as a 0. The
problem is to send a lot of important messages down this line, as quickly and as reliably as possible.
The coding theorist’s solution is to send only certain strings of 0’s and 1’s, called codewords. Here is a
simple example: one of two messages will be sent, either YEs or No.

YEs 00000 10100 00000
[ ey B vy IS vy B ooy
No 1111 '“T‘e = YEs
Noise

Yes will be encoded into the codeword 00000, and No into 11111. Suppose 10100 is received in
Boston. The receiver argues that it is more likely that 00000 was sent (and two errors occurred) than
that 11111 was sent (and three errors occurred), and therefore decodes 10100 as 00000 = YEs. For in
some sense 10100 is closer to 00000 than to 11111. To make this precise, define the Hamming distance
(or simply the distance) between two vectors u = (uy, ..., u,) and v = (vy,. . ., v.) to be the number of
places where u; # v, This is denoted by dist (u, v). E.g., dist (10100,00000) = 2, dist(10100,11111) = 3,
and even dist(0122,2001) = 4 (the same definition applies to nonbinary vectors). It is easily checked
that dist is a metric. Then the receiver should decode the received vector as the closest codeword,
measured in Hamming distance.

Notice in this example two errors were corrected. This is possible because the codewords 00000
and 11111 are at distance S apart. In general, if d is the minimum Hamming distance between
codewords, the code can correct e = [3(d — 1)] errors, where [x] denotes the greatest integer not
exceeding x. For if e or fewer errors occur, by the triangle inequality the received vector is still closer
to the transmitted codeword than to any other. This motivates the

DErFINITION. An [n, k, d] binary code consists of 2% vectors u = (u, ..., u,), u; € F, = {0, 1}, called
codewords, such that

(i) the sum, taken componentwise and modulo 2 (without carries!), of any two codewords is again
a codeword; and

(ii) any two codewords differ in at least d places.
Then n is called the length, k the dimension, and d the minimum distance of the code. In a good code
n is small (for rapid transmission), k is large (for an efficient code), and d is large (to correct many
errors). These are incompatible goals! For more about codes see for example [7], [8], [10], [36], [37],
[42], [55].

Examples:

(1) C,=1{00000,11111}, the code of the example, is a [5,1,5] code.

(2) More generally C;={00...0,11...1} is an [n, 1, n] repetition code.

(3) C5=1{000,011,101,110} is a [3,2,2] code. To verify this, note that each of the 4 codewords has
3 components. Also the sum of the codewords 011 and 101 (for example) is 110. Finally any two
codewords differ in at least (in this case exactly) two coordinates.
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4) C., a[7,3,4] code:

0000000
1110100
0111010
0011101
1001110
0100111
1010011
1101001

(5) Cs,a[7,4,3] Hamming code, consists of the codewords of C, together with their complements:

0000000 1111111
1110100 0001011
0111010 1000101
0011101 1100010
1001110 0110001
0100111 1011000
1010011 0101100
1101001 0010110

(6) Ce, an [8,4,4] extended Hamming code, formed by placing a 1 at the end of the 8 codewords
on the left in Cs, and a 0 at the end of the 8 codewords on the right. (This is one of the codes
mentioned in Part I, Section E.) The same technique can be applied to any [n, k, d odd] code. Placing
a 1 at the end of the codewords containing an odd number of 1’s and a 0 at the end of those with an
even number of 1’s we obtain an [n + 1, k, d + 1] extended code.

For later use we mention a few important larger codes, although without giving any details.

(7) The two binary Golay codes, namely the [23, 12, 7] code C; and the [24, 12, 8] extended code
Cs (28], [29]).

(8) The codes Cs and C; are both examples of quadratic residue codes ([5], [6]). This is an infinite
family of codes. Other quadratic residue codes are the [31,16,7] code, the [47,24,11} code, and the
[48,24, 12] extended code C.

There are many situations in which it is better to use a nonbinary code. Let F, denote the Galois
field with q elements. E.g., F;={0,1,2} with addition, multiplication, division etc., performed
modulo 3.

DEFINITION. An [n, k, d] code over F, consists of g* codewords (u,, .. ., u,), which have Hamming
distance at least d apart and form a linear space. That is, the sum, performed componentwise in F,, of
any two codewords is again a codeword, and any scalar multiple (cu,, .. ., cu.), ¢ € F,, of a codeword is
again a codeword.

Exam})les:
(1) Cu, a [4,2,2] code over Fi:

0000 1120 2102
0111 2210 2021
0222 1201 1012

(10) There is also a [12,6, 6] Golay code Ci, over F;—see [28], [29].

B. Dual code. Let € be an [n, k, d] code over F,. The dual (or orthogonal) code 6" consists of all
vectors having zero dot product (in F,) with every codeword of €. Thus
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‘6*={(u1,..‘,u,.): u-v=> o =0
i=1

for all v = (vy,...,0,)E ‘6’}
Then it is easy to see that €* is an [n, n — k, d'] code, for some positive integer d'.

Examples: The binary code {00, 11} is its own dual! The dual of C, is the [n,n —1,2] code
consisting of all codewords with an even number of 1’s. The dual of C; is {000,111}, and C, and Cs are
dual to each other. (It is an amusing and informative exercise to verify these facts.)

A self-dual code is one for which €* = 4. The examples Cs, Cs, Co, C1o, C11 are all self-dual.

In a self-dual code k must be equal to 31, and so n must be even.

Self-dual codes are a particularly interesting class, for several reasons:

(1) It is known that there exist self-dual codes which are about as good as any code can be —more
precisely, they meet the Gilbert~Varshamov bound [44], [60].

(2) A number of the best codes known are self-dual. For example, extended quadratic residue
codes are self-dual whenever the length is of the form n = 8m where 8m —1 is a prime.

(3) Since the codewords of the dual code 6* are parity check equations on €, knowing that
% = $* may simplify the decoding procedure (see for example [27]).

(4) The codewords in a self-dual code under certain conditions form ¢-designs, and many 5-designs
have been constructed in this way (see [3], [4], [56], [57]).

(5) There are connections between self-dual codes and sphere-packings, geometric lattices, large
finite groups, and projective planes—see [3], [4], [12], [15]-[17], [34], [42], [45], [67].

Binary self-dual codes of length n =24 have been classified in [58], [61], [62]. See also [24], [50],
[59].

C. Weight enumerators. Examples (5)-(8) should have convinced the reader that codes are large,
unwieldly objects. One way of handling a code and extracting some useful information from it is by
means of its weight enumerator.

- The Hamming weight (or simply the weight) of a vector u = (u,,.. ., 4,) is the number of nonzero
u;. This is denoted by wt (u). E.g., wt(1101000) = 3, wt(1201) = 3. Clearly dist (u, v) = wt (u — v). Since a
code € is a linear space, for any codewords u,v, dist(u,v)=wt(u—v)=wt(w) for some weE €.
Therefore the minimum distance d between codewords is equal to the smallest weight of any nonzero
codeword.

The weight enumerator of an [n, k, d] code € is simply a polynomial which tells the number of
codewords of each weight. If € contains A; codewords of weight i, then the weight enumerator of € is
defined to be

(21) W%(x’ Y) = Z Aixn_‘y‘7
i=0
where x and y are indeterminates. Stated another way,

(22) ch(x’ y) = Z x"—wt(u)yw‘(“).

ue€

Equations (21) and (22) are complicated-looking definitions for a very simple idea, which some
examples will make clear.

Code € Weight Enumerator We(x, y)
(23) {00, 11} x*+y?
Cz x"+ y'I

Cs x*+3xy?
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(24) C, x7+7xy?

Cs X7+ Txy Iyt + y7
) Cs 0 =x+14x%y*+ y®
(25) G x*+8xy?

For example, the weight enumerator of C, is x”+ 7x>y* because there is one codeword with 7
zeros (giving the term x”) and 7 codewords with 3 zeros and 4 ones (giving the term 7x°y*). The weight
enumerators of Cs and C, were given in Eqs. (10) and (14).

Notice that We(x,y) is a homogeneous polynomial of degree n. The weight enumerator
immediately gives the minimum distance d of €. For € always contains the zero codeword, giving the
leading term x" in We(x, y), and the next nonzero term is A.x" "y Thus

Wi, y) = x" +0x" 7y + -+ 0x" 4y 4 4 A xndyd 4.

An illustration was given in Eq. (11). We s also used to find the error probability of the code, and for
other purposes—see [7] or [42].

D. MacWilliams theorem. For a large code it is in general a very tough problem to find the weight
enumerator. One of the chief weapons available is the following remarkable theorem of F. J.
MacWilliams, which states that the weight enumerator of the dual code €* is uniquely determined by
the weight enumerator of €.

THeEOREM 6. (MacWilliams [40]; see also [42], [43]). If € is an [n, k, d] code over F, with dual code
€*, then

6) Was(x.3) = 2 Welx + (g = Dy x =),
We shall just prove the binary version, when g = 2. This states that

en We(53) = 3¢ Welx + 3,x - y),

or equivalently

n—wt(u wt(u 1 n—wt(u wt(u
(28) 2 XTIy = o B () T = )

ueg+
The proof depends on the following lemma, which is in fact a version of the Poisson summation
formula [23, p. 220]. Let F" denote the set of all binary vectors of length n.

Lemma 7. ([37]). Let f be any mapping defined on F". We must be able to add and subtract the
values f(u), but otherwise f can be arbitrary. The Hadamard transform of f, f, is defined by

29) fy= 2 (=1"f(),  weF

Then if € is an [n, k, d] binary code

60) S fw=5 3 f)
Proof

2fw=2 > 07fw= 3 f0) 3 -

Now if v € €*, u-v is always zero, and the inner sum is 2*. But if v & €* then a moment’s thought
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shows that u-v is 0 and 1 equally often, and the inner sum is 0. Therefore
> fw=2t > fm). QED.
ueé vEE

Proof of Theorem 6. We apply the lemma with

f(u) =x n—wt(u)y wt(u) ,
&) -
f(u) — En (_ l)u-vxn—w((v)ywt(v) )

vEF

Let u=(u;u,), v={_(v;"v.). Then

f‘(u) — v;" (_ 1)u1v1+~~-+u,.v,. I—nI xx_

32)

n

1 1
= Z=O e Z= l_[ (_- 1)“ivix1_”iyvl.

i=

Just as
1oboCo+ aobocy + aobico+ aohici + aiboco + arboc, + arbico+ arbicy

is equal to (ao+ a)(bo+ b1)(co + 1), so (32) is equal to

If w; =0, the inner sum is x + y. If w; =1, it is x — y. Thus

(33) flw = (x4 y) ™ =y,
Then Eq. (30) reads

2 xn wt(u) wz(u)______ z (x+ y n wt(u)(x )W!(u)

uegt

which is Eq. (28). Q.E.D.

Examples: Let us illustrate Th. 6 by applying it to the code € = C; with weight enumerator
We(x, y)= x>+ 3xy>. Then

iWex+y,x—y)={x+y)V+3x+y)x-y)yt=x+y’,

which is indeed the weight enumerator of the dual code C3 = {000, 111}.
Of course if € is a self-dual code, both sides of Eqs. (26) and (27) must be the same. For example, if
€ ={00,11}, We(x,y)=x*+y? and

Welx +y,x—y)=z{(x +yV+ (x - y)?}
=x’+y*= Welx,y)
which is correct since € is self-dual. This is an illustration of

CoroLLARY 8. If € is an [n,3n, k] self-dual code over F,, then

Welx,y) = /z We(x +(q - 1)y, x—y).

Since Wel(x, y) is a homogeneous polynomial of degree n.we can write this as
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We have already used this fact in Part I, Section G, where we pointed out that (34) implies that
We(x, y) is invariant under a certain linear transformation. This brings us to the main part of the

paper.
III. INVARIANT THEORY

A. Groups of matrices. Throughout this paper the letters ®,9,... denote finite groups of
complex m X m matrices. We remind the reader that the statement “® is a group of matrices”” means
that @ is set of invertible matrices with the following properties: if A and B are in @ so is the product
AB; the unit matrix I is in ®; and the inverse A" of every A €@ is also in &. The number of
matrices in @ is called its order and will be denoted by g.

Given a collection A, ..., A, of m X m matrices we can form a group ® from them by multiplying
them together in all possible ways. Thus & contains the matrices I, A:, A, ..., AA,,...,
AAT'AY'As, ... We say that @ is generated by A, ..., A,. Of course & may be infinite, in which
case the theory of invariants described here doesn’t directly apply. (But see [20], [63], [74].)

Example: Let us show that the group ®, generated by the matrices

1 (1 1) (1 0)
M=—= dJ=
NCASEEE Ve 0 i

that was encountered in Section B of Part I does indeed have order 192. The key is to discover (by
randomly multiplying matrices together) that , contains

12=(1 0), E=(MJ)3=1ii<10),

0 -1 V2 \01
2=_.10> R =<01>
E 1(01, R=MIPM=(] ).

Set n = (1+i)/V2=cos45° + isin45°. Then ®, contains the 16 matrices

1 0) 01) S
a<0 +1) a(ilO’ a€{l,i, -1, i},

which form a subgroup §,. From this it is easy to see that &, consists of the union of §, and 11 cosets
ak\61 = {akA: A€E .61} Thus

12
(35) ©1= U ak@l,
k=1
where ay, ..., as are respectively
<10) (10) L(l 1) L(l 1) L(l i) L(l i)
017 \oi/" va\t =177 V2 \i —i)? Vo =i/ Val\i 1)
and a; = na, ..., a2 = nas. From this it is possible to obtain a list of all 192 matrices in &, —they are
the matrices
10 01 1 /1 B
s Tk 7ok 7350 5)
(6) K 0« K a0 K V2 \a - af

forO0=v=7and o, BE{1,i, -1, —i}.
As a check, one verifies that every matrix in (36) can be written as a product of M’s and J’s; that
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the product of two matrices in (36) is again in (36); and that the inverse of every matrix in (36) is in
(36). Therefore (36) is a group, and is the group generated by M and J. Thus @, is indeed equal to
(36).

We have gone into this example in some detail to emphasize that it is important to begin by
understanding the group thoroughly. (For an alternative way of studying &, see [12; pp. 160-161].)

B. Invariants. To quote Hermann Weyl [73], “‘the theory of invariants came into existence about
the middle of the nineteenth century somewhat like Minerva: a grown-up virgin, mailed in the shining
armor of algebra, she sprang forth from Cayley’s Jovian head.” Invariant theory became one of the
main branches of nineteenth century mathematics, but dropped out of fashion after Hilbert’s work:
see [25], [64]. Recently, however, there has been a resurgence of interest, with applications in
algebraic geometry [20], [53], physics (see for example [1] and the references given there),
combinatorics [22], [65], and coding theory [41], [48], [49].

There are several different kinds of invariants, but in this paper an invariant is defined as follows.

Let ® be a group of g m X m complex matrices A, .. ., A,, where the (i, k )th entry of A, isa$’. In
other words, ® is a group of linear transformations on the variables xi, ..., X.., consisting of the
transformations

37 T replace x; by x{¥'= 2, af’x, i=1,...m
p k=1

fora =1,2,...,g Itis worthwhile giving a careful description of how a polynomial f(x) = f(xi,..., Xm)
is transformed by a matrix A, in ®. The transformed polynomial is

Aaef(x) = f(x1,. ., x),

where each x{* is replaced by Z7-, a{’x.. Another way of describing this is to think of x =
p y

i

(x1,..+, %) as a column vector (where the T denotes transpose). Then f(x) is transformed into
(38) Ay o f(x) = f(Aax),

where A.x is the usual product of a matrix and a vector. One can check that

39) B (A < f(x))=(AB)f(x) = f(ABx).

For example, A = (} _}) transforms x7+ x, into (x; + 2x,)° — x.
p

DEerINITION. An invariant of @& is a polynomial f(x) which is unchanged by every linear
transformation in ®. In other words, f(x) is an invariant of ® if

Aq o f(x) = f(Aax) = f(x)
forall e =1,..., g

Example: Let

s={(o 1) (7o -1}

a group of order g =2. Then x°, xy and y® are homogeneous invariants of degree 2,
Even if f(x) isn’t an invariant, its average over the group is, as was mentioned in Sectiorr E of
Part L.

THEOREM 2. Let f(x) be any polynomial. Then
= 1
(40) fo=3 3 Acef)

is an invariant of ®.
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Proof. Any Az €@ transforms the right-hand side of (40) into

ay ¢ (AAnef(0). by G9).

It is an easy exercise in group theory to see that as A, runs through ®, so does A, A, if Az is fixed.
Therefore (41) is equal to

o3 A ef

which is f(x). Therefore f(x) is an invariant. Q.E.D.

More generally, any symmetric function of the g polynomials A, °f(x),..., A e f(x) is an invariant
of ®.

Clearly if f(x) and h (x) are invariants of &, so are f(x) + h(x), f(x)h(x), and cf(x) (c complex). This
is equivalent to saying that the set of invariants of &, which we denote by #(®), forms a ring.

One of the main problems of invariant theory is to describe #(@®). Since the transformations in @
don’t change the degree of a polynomial, it is enough to describe the homogeneous invariants (for any
invariant is a sum of homogeneous invariants).

C. Basic invariants. Our goal is to find a ““basis” for the invariants of ®, that is, a set of basic
invariants such that any invatiant can be expressed in terms of this set. There are three different types
of bases one might look for.

DEerINiTION. Polynomials fi(x), .. ., f,(x) are called algebraically dependent if there is a polynomial p
in r variables with complex coefficients, not all zero, such that p(fi(x),..., f.(x))=0. Otherwise
fi(x), ..., f,(x) are called algebraically independent. A fundamental result from algebra is:

THEOREM 9 [32, p. 154]). Any m + 1 polynomials in m variables are algebraically dependent.

The first type of basis we might look for is a set of m algebraically independent invariants
fi(x), ..., fu (x). Such a set is indeed a “‘basis”’, for by Th. 9 any invariant is algebraically dependent on
fi,-.., fn and so is a root of a polynomial equation in f,, .. ., f... The following theorem guarantees the
existence of such a basis.

Tueorem 10 [14, p. 357]. There always exist m algebraically independent invariants of .

Proof. Consider the polynomial [1%_, (t — A, ° x,) in the variables ¢, x,, .. ., x,.. Since one of the A,
is the identity matrix, t = x, is a zero of this polynomial. When the polynomial is expanded in powers
of 1, the coefficients are invariants by the remark immediately following the proof of Th. 2. Therefore
x; is an algebraic function of invariants. Similarly each of x,..., x,, is an algebraic function of
invariants. Now if the number of algebraically independent invariants were m' (< m), the m
independent variables x,, ..., x, would be algebraic functions of the m' invariants, a contradiction.
Therefore the number of algebraically independent invariants is at least m. By Th. 9 this number
cannot be greater than m. Q.E.D.

Example: For the preceding group ®., we may take f,=(x+y)’ and fo=(x—y)* as the
algebraically independent invariants. Then any invariant is a root of a polynomial equation in f, and
f2. For example,

CAVREVEY, =i )

and so on.
The second type of basis, whose existence is guaranteed by the next theorem, is easier to work
with.
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THEOREM 11 [14, p. 359]. There always exist m + 1 invariants f,, ..., fu1 of & such that any
invariant of ® is a rational functioninf, ..., fu\, i.e., is the ratio of two polynomials inf,, ..., fu ..

Example: For ®,, x>, xy and y’ form such a basis.

However, by far the most convenient description of the invariants is a set f,, ..., f, of invariants
with the property that any invariant is a polynomial in f,, ..., f. Then f,,..., f is called a polynomial
basis (or an integrity basis) for the invariants of . Of course if / > m, then by Th. 9 there will be
polynomial equations, called syzygies, relating fis oo f

For example, f, = x?, f,= xy, fy= y* form a polynomial basis for the invariants of ®,. The syzygy
relating them is f,f;— f3= 0. The existence of a polynomial basis, and a method of finding it, is glven
by the next theorem.

TheorReM 12 (Noether [54]; see also Weyl [74, p. 275]). The ring of invariants of a finite group & of
complex m X m matrices has a polynomial basis consisting of not more than ("8) invariants, of degree
not exceeding g, where g is the order of ®. Furthermore, this basis may be obtained by taking the average
over & of all monomials

xtixbe . oxbm
of total degree 2 b; not exceeding g.

Proof. Let the group & consist of the transformations (37). Suppose

fxi, .o Xm)= 2 (% STEEES SN c. complex,
€
is any invariant of . (The sum extends over all e=e,,..., ¢, for which there is a nonzero term
xioeexyein f(xy,.. ., X ).) Since f(xi, .. ., X, ) is an invariant, it is unchanged when we average it over

the group, so

f<x,,...,xm)=§{f(x<,”,...,xs;>)+ e L )
=§Z e () (et

() (@)} = z cJe  (say).

e

Every invariant is therefore a linear combination of the (infinitely many) special invariants
J.= i (x$)er - (x ),
a=1
Now J. is (apart from a constant factor) the coefficient of uf'---u;r in
8
=D (x '+ o Ux Y,
a=1

where e = e, + - -+ e,. In other words, the S, are the power sums of the g quantities
wxP+ o ux Y x®+ o+ ux @

It is well known [33] that any power sum S,, e = 1,2, ..., can be written as a polynomial with rational
coefficients in the first g power sums

S, Ss..., Se

Therefore any J. for e = 2{*, &; > g (which is a coefficient of S, ) can be written as a polynomial in the
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special invariants
Jo with e+ - te, =g

(which are the coefficients of Si,. .., S,). Thus any invariant can be written as a polynomial in the J.
with ZiL, e; = g. The number of such J. is the number of e,e;- - -e,, withe,Z0 and e, + -+ ¢, = g,
which is (" .%). Finally deg J. = g, and J. is obtained by averaging x{' - - - x i over the group. Q.E.D.

D. Molien’s theorem. Since we know from Th. 12 that a polynomial basis always exists, we can go
ahead with confidence and try to find it, using the methods described in Section E of Part I. To
discover when a basis has been found, we use Molien’s theorem (Theorem 1 above). This states that if
aa is the number of linearly independent homogeneous invariants of & with degree d, and

q)(sg(A) = E ad/\ d,
d=0
then
_1
(42) PoA g (,2 det( 1 AA,)

The proof depends on the following theorem.

THeorREM 13 [51, p. 258; 66, p. 29]. The number of linearly independent invariants of ® of degree 1

is
a =—;—i trace (A,).
a=1

Proof. Let S = (1/g)Z8 -, A.. Changing the variables on which ® acts from x,, ..., Xm to y1,.. ., ym,
where (yi,. .., Ym) = (X1,..., X )T", changes S to ' = TST~'. We may choose T so that S’ is diagonal
(see [14, p. 252]). Now §? = S, (S')* = S, hence the diagonal entries of S are 0 or 1. So with a change
of variables we may assume

with say r 1’s on the diagonal. Thus Sey, =y, if 1=i=r, Sey, =0if r+1=i=m.

Any linear invariant of ® is certainly fixed by S, so a,=r. On the other hand, by Th. 2,
Soy, =(1/g)Z8-,A. 0y is an invariant of ® for any i, and so a,=Zr. QE.D.

Before proving Th. 1 let us introduce some more notation. Equation (37) describes how A,
transforms the variables xi,..., x.. The d-th induced matrix, denoted by AY'!, describes how A,
transforms the products of the x; taken d at a time, namely x{ x5 ..., x{ 'xa,... (2], [39, p. 122]).
E.g., A, = (¢ 5) transforms x3, x,x, and x3 into

x2xi+2abx,x,+ b*x3,
xcxi+ (ad + be)x,x, + bdx3,

c*xi+2cdx x, + d*x?
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respectively. Thus the 2nd induced matrix is
a® 2ab b’
A%=| ac ad +bc bd |’
> 2d d°

Proof of Theorem 1: To prove Eq. (42), note that a, is equal to the number of linearly
independent invariants of degree 1 of 8¢ ={A'": a =1,...,g}. By Th. 13,

1
a; =~ i trace AL,

8 di=1
Therefore to prove Th. 1 it is enough to show that the trace of A is equal to the coefficient of A in
1 1
(“3) det(I-AAL) (1= Awy) (1= Aw,)’
where w,..., w, are the eigenvalues of A.. By a suitable change of variables we can make
i
ws 0
Wi 0
al L e | |
’ wi w,
0 Wor .
0 . J
and trace A" = sum of the products of w,, ..., w,, taken d at a time. But this is exactly the coefficient

of A4 in the expansion of (43). Q.E.D.
It is worth remarking that the Molien series does not determine the group. For example there are
two groups of 2 X 2 matrices with order 8 having

_ 1
PN =TT
(namely the dihedral group ®. and the abelian group 8, x 8.). In fact there exist abstract groups %
and B whose matrix representations can be paired in such a way that every representation of % has the
same Molien series as the corresponding representation of B ([18)).

E. A standard form for the basic invariants. The following notation is very useful in describing
the ring #(®) of invariants of a group &. The complex numbers are denoted by €, and if p(x), q(x), ...
are polynomials C[p(x),q(x),...] denotes the set of all polynomials in p(x), q(x) with complex
coefficients. For example Th. 3a just says that $(®,)=C[6, ¢].

Also @ will denote the usual direct sum operation. For example, a statement like $(B)=R D S
means that every invariant of ® can be written uniquely in the form r+s where rER, s€S.
(Theorem 15 below illustrates this.)

Using this notation we can now specify the most convenient form of polynomial basis for # ().

DEFINITION. A good polynomial basis for $(®) consists of homogeneous invariants f,, ..., f;
(I'Z2 m) where f,,...,f, are algebraically independent and
(44a) IS@®)=C[fr,....fn] if [=m,

or, if [ > m,
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(44b) I@)=Clfi,.. . fu| B i Cf1s s fu] B BClfr,. s fur].

In words, this says that any invariant of & can be written as a polynomialin f,..., f. (if /| =m), or
as such a polynomial plus f,, ., times another such polynomial plus..... (if / > m ). Speaking loosely, this
says that, to describe an arbitrary invariant, fi, .. ., f.. are “free” invariants and can be used as often as
needed, while f,..i,..., f; are “transient” invariants and can each be used at most once.

For a good polynomial basis fi, ..., fi we can say exactly what the syzygies are. If [ = m there are
no syzygies. If / > m there are (I — m)’ syzygies expressing the products ff, (i = m, j = m)in terms of
fis. o fi

It is important to note that the Molien series can be written down by inspection from the degrees of
a good polynomial basis. Let d, =degf,,...,d; = degf. Then

_ 1 -
(45a) (D(”(A)_H,f":,(l myTat if I=m,
or
1+, A%,
==+t
(45b) Dy(A) M (=A%) if [>m.

(This is easily verified by expanding (45a) and (45b) in powers of A and comparing with (44b).)
Some examples will make this clear.
1. For the group @, of Part I, f, = 8 and f. = ¢ form a good polynomial basis, with degrees d, = 8,
d» = 24. Indeed, from Th. 3a and Eq. (5),

f(@1)= C[6,¢] and P, (A) =mtl—_—/{27).

2. For the grouﬁ ®, defined in Section B, f, = x>, f. = y?, f,= xy is a good polynomial basis, with
d, = d,= d;=2. The invariants can be described as
(46) - J(@:)=c[x*y D xy C[x? y7].

In words, any invariant can be written uniquely as a polynomial in x* and y® plus xy times another
such polynomial. E.g.,

(x Fy)'= (7 +6x7y* + (y°) + xy(4x” + 4y?).

The Molien series is

C1f 1 1) 1422
o) =3\ i T AT

in agreement with (45b)'and (46). The single syzygy is x> - y> = (xy)>. Note that f, = x*, fo = xy, f; = y?
is not a good polynomial basis, for the invariant y* is not in the set C[x* xy]@ y’>C[x? xy].

3. In [41] we gave an example, arising from coding theory, of a group ®; (say) of 4 X 4 matrices
with order 128, for which the Molien series is

_ 1+/\8+/\10+/\18
(D@s(/\)_(1_/\2)(1_/\4)(1_/\8)2.

A good polynomial basis for the invariants of this group consists of free invariants f,, fs, fs, fa, of
degrees 2, 4, 8, 8, and transient invariants f, = p (deg 8), fs= q (deg 10), and f = pq (deg 18). Then if
B denotes C[fi, f2, f3, fa], we have

9(®s)= B @ pB D qB G pqB.

There are syzygies expressing p* and q° in terms of f,,..., fe.
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4. A more complicated example, also arising from coding theory, is described in [48]. This is a
group of 4 X 4 matrices, with order 336, having Molien series

T+HAR A+ AZH A+ A B+ AP+
A=A =-AA=-2%HA-A1"

A good polynomial basis is given in [48]. Fortunately the following result holds.

THeorem 14 (Hochster and Eagon [31, Prop. 13]; independently proved by Dade [19]). A good
polynomial basis exists for the invariants of any finite group of complex m X m matrices. (The proof is
too complicated to give here.)

So we know that for any group the Molien series can be put into the standard form of Egs. (45a),
(45b) (with denominator consisting of a product of m factors (1 — A*) and numerator consisting of a
sum of powers of A with positive coefficients); and that a good polynomial basis Egs. (44a), (44b) can
be found whose degrees match the powers of A occurring in the Molien series.

On the other hand, the converse is not true. It is not always true that when the Molien series has
been put into the form (45a), (45b) (by cancelling common factors and multiplying top and bottom by
new factors), then a good polynomial basis for # (®) can be found whose degrees match the powers of
A in @(A). This is shown by the following example, due to Stanley [71].

Let @ be the group of order 8 generated by the matrices

-1 0 0 100
( 0 -1 0) and [0 10)'
0 0 -1 001

(47) (D(s;(,(/\ ) = (1—_1X2—);
_ 1+A°
(A=A (-2

The Molien series is

(48)
A good polynomial basis exists corresponding to Eq. (48), namely
(@) = C[xz’ y? ZAJ@XY C[x%y? 24],

but there is no good polynomial basis corresponding to (47).

The problem of finding which forms of ®(A) correspond to a good polynomial basis and which do
not remains unsolved in general.

However, one important special case has been solved. Shephard and Todd [68] have characterized
those groups for which (44a) and (45a) hold, i.e., for which a good polynomial basis exists consisting
only of algebraically independent invariants. These are the groups known as unitary groups generated
by reflections. A complete list of the 37 irreducible groups of this type is given in [68].

IV. AppLICATIONS

We begin with a further example of the use of invariant theory to obtain results about weight
enumerators. This illustrates the general plan of attack described in Section H of Part I in a situation
where it is rather difficult to find a good polynomial basis. Other examples may be found in [41], [49]
and [50]. It is worth mentioning that some of these examples use infinite groups and relative rather
than absolute invariants.

A. Complete weight enumerator of a Ternary Self-Dual Code. Let € be an [n,3n, d] self-dual
code over F; which contains some codeword with no zeros. By suitably multiplying columns by —1
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(which doesn’t change the error-correcting ability of the code) we can assume that € contains the
codeword 1=111...1.

Let Ay be the number of codewords in € containing i 0s, j 1's and k 2’s (where i +j + k = n).
Then the complete weight enumerator of € is defined to be

V(xy, 2)= 2 Apx'y'z = 3, xo®ysiza®,
ik

uEe®€

where s;(u) is the number of components of u that are equal to i. For example, the complete weight
enumerator of the Golay code C;, (normalized to contain 1) is

V(x,y,2)=x2+y%+ 27+ 22(xy°+ x°2°+ y°z°)
(49) +220(x%y’2° + X’y + £7y>2°).

The complete weight enumerator gives more information about a code than the weight enumerator
W(x,y) does. Of course the latter can be obtained from the equation W(x,y)= V(x,y,y).
The goal of this section is to characterize the complete weight enumerator of € by proving:

THeoREM 15 ([70]). If V(x,y, z) is the complete weight enumerator of a self-dual code over Fy
which contains 1, then

V(x, Y, Z) ecC [012, ,Bé, 636] @ ,Be}’lsc[alz, ,Bé, 536]

(i.e., V(x,y,z) can be written uniquely as a polynomial in @\, B%, 836 plus Beyis times another such
polynomial), where

= a(a’+8p?),
Be=a’—12b,
yis= a®—20a’p> - 8p°,
8:=p’(a’=p’),

and
a=x>+y’+2°
p =3xyz,
b=xy’+x’2°+y%2°

Note that yis = a3, — 648:. (The subscript of a polynomial gives its degree.)

Proof. The proof follows the two stages described in Section H of Part I.
Stage I Let a typical codeword u € € contain a 0’s, b 1’s, and ¢ 2’s. Then since € is self-dual and
contains 1

u-u=0 (mod 3) > 3|(b+c),

u-1=0 (mod 3) > 3|(b—c)=> 3|b and 3|,
1:1=0 (mod 3) > 3|(a+b+c)> 3|a
(

(where a|b means “a divides b”). Therefore V(x,y,z) is invariant under the transformations

w00 100 100
(0 10), Ji= 0(00), 01 0>, w:ez’"ﬁ.
001 001 00 w

Also —u contains a 0’s, ¢ 1’s, b 2’s, and 1 +u contains ¢ 0s, a 1’s, b 2’s. Therefore V(x,y,z) is
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100 010
001,001>,
010 100

i.e., under any permutation of its arguments.
Finally, from the MacWilliams’ theorem for complete weight enumerators ([42] or [43]), V(x, y, z)

is invariant under
| 11 1
M;=——[1 o ?}.

2
1l o o

invariant under

These 6 matrices generate a group ®,, of order 2592, consisting of 1944 matrices of the type

1 1
Sv wa M; wc , s = 8271-:/12,
wb wd

and 648 matrices of the type
1
s’ w° P,
(l)b

where 0=v=11,0=a,b,c,d=2, e=1or 3, and P is any 3 X 3 permutation matrix.

Thus Stage I is completed: the assumptions about the code imply that V/(x, y, z) is invariant under
the group ®,.

Stage II consists of showing that the ring of invariants of @, is equal to
C @12, Biz, B36) B Y24 C[ 12, Bz, 836). First, since we have a list of the matrices in &, it is a
straightforward hand calculation to obtain the Molien series, Eq. (3). As usual everything collapses
and the final expression is

1+A%
B TR}

This suggests the degrees of a good polynomial basis that we should look for.

Next, ®, is generated by J5, M5, and all permutation matrices P. Obviously the invariants must be
symmetric functions of x, y, z having degree a multiple of 3. So we take the algebraically independent
symmetric functions a, p, b, and find functions of them which are invariant under J; and M;. For
example, Bs is invariant under J;, but is sent into — B¢ by M;. We denote this by writing

Bs‘lj’ Bs, 36:4; - B6'

Therefore B% is an invariant. Again
oL (a+2p) 5L (0 +20p)S— (a+20%p)
V3 SRV V3 P

so another invariant is a;, = a(a +2p)(a +2wp)(a +2w’p) = a(a’+8p?). Again

"3 M3
Y18 <> VYis, Y18<€> ~ VYis,

SO Bsyis is an invariant. Finally
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gives the invariant
8= p(a—p)(a—wp)(a=-w’p)=p’(a-p’)

The syzygy yis = @i, — 6483 is easily verified, and one can show that ai,, 8%, 83 are algebraically
independent. Thus f; = @2, f> = B%, f3= 816, fs = Bey1s is @ good polynomial basis for #(®,), and the
theorem is proved. Q.E.D.

Remark. Without the assumption that the code contains the all-ones vector, the theorem (due to
R. J. McEliece) becomes much more complicated (see [41, §4.7], [50]).

Applications of Theorem 15. For the ternary Golay code (Eq. (49)) V =&(5a12+ B%). For Pless’s
[24, 12, 9] symmetry code ([56], [57]),

67 1 1 11
V=m afz'l'g alZBg-I'E B§+'27 Bs7V1s.

The complete weight enumerators of the symmetry codes of lengths 36, 48 and 60 have also been
obtained with the help of Th. 15 (see [50]).

B. The nonexistence of certain very good codes. One application of Th. 3c was given in Section
F of Part I, where it was used to determine the weight enumerator of a certain code. Other
applications of this type may be found for example in [47].

A different type of application of Th. 3c is to show that certain codes with high minimum distance
do not exist. The idea is to assume that the code does exist, and then to use Th. 3¢ to show that one of
the coefficients in the weight enumerator is negative. But this is obviously impossible; therefore the
code does not exist.

To explain the family of codes to which we shall apply this method, consider first the [7, 4, 3]
Hamming code Cs and the [23,12,7] Golay code C,. These two codes have several properties in
common, besides being quadratic residue codes as was mentioned earlier. For example they are both
perfect codes. An [n, k, d] code over F, is called perfect if every vector is within Hamming distance
[3(d = 1)] of some codeword. Perfect codes are very rare, and in fact Tietdviinen and van Lint (see
[72], [38]) have given a complete list of all perfect codes. In particular, there is no binary perfect code
with d >7, and so the sequence Cs, C, ... of binary perfect codes stops at C..

But there is another way of continuing this sequence. The extended codes, that is, the [8, 4, 4] code
Cs and the [24, 12, 8] code Cs, are both binary self-dual codes with all weights divisible by 4 and having
minimum distance d = 4[n/24] + 4. This is the highest possible minimum distance for such a code, as
the following argument shows.

Let € be any [n,3n, d] binary self-dual code with all weights divisible by 4, and having weight
enumerator W(x, y). By Th. 3¢, W(x, y)is a polynomial in 6 and ¢ and therefore can be written as

(50) Wit y)=2 ab e,
i=0
where n =8 =24u + 8y, v=0,1 or 2.
Suppose the u +1=[n/24]+1 coefficients a; in (50) are chosen so that
W(x,p) = x" + Agpax "yt oo
=W(xy)*  (say).

Le., the a; are chosen so that W(x, y) has as many leading coefficients as possible equal to zero. An
example of this was given in Section F of Part I. This determines the a; and A; uniquely. The resulting

(51)
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W* is the weight enumerator of that self-dual code with the greatest minimum weight we could hope
to attain, and is called an extremal weight enumerator.

If a code exists with weight enumerator W*, it has minimum distance d* = 4p +4, unless A, 4 is
accidentally zero, in which case d*=4u +8.

But it can be shown [47] that A, s, the number of codewords of minimum nonzero weight, is

equal to:
n 5p—2>/<4p+4> o
5)( w1 s ) if n=24p,

1
4
3

nn-1)n-2n -4 —SB it i —2ap 48
w!@du+4)r ’

3 _ (Su +2)! oo

sn(n 2)M!(4I~b+4)!’ if n=24u +16,

and is never zero. This proves

TueoreM 16 ([47]). The minimum distance of a binary self-dual code of length n with all weights
divisible by 4 is at most 4[n/24]+ 4.

So it is natural to study the sequence of self-dual codes with weights divisible by 4 and minimum
distance actually equal to 4[n/24] + 4. Such codes are known to exist for n = 48 and for a few larger
values of n (see [42]). Length n = 72 is the most important open case (see [69]). But the next theorem
shows that this sequence of codes (like that of perfect codes) is finite.

In fact it turns out that the second coefficient in (51), A4, s, is negative if n is large (above about
3712), and so a self-dual code with weight enumerator W* does not exist for large n. Furthermore, one
can show that no self-dual code can even have minimum distance within a constant of n/6, if n is
sufficiently large:

Tueorem 17 ([46]). Let b be any constant. Suppose the a; in (50) are chosen so that
W(x,y)=x"+ Agx" "ty + oo,

where d = n/6— b. Then one of the coefficients A, is negative, for all sufficiently large n. So a binary
self-dual code of length n, weights divisible by 4, and minimum weight d does not exist for all sufficiently
large n.

On the other hand it is known that binary self-dual codes with weights divisible by 4 do meet the
Gilbert-Varshamov bound [44].
Similar results hold for ternary self-dual codes and for certain types of lattice sphere packings (see

[46]).
V. CONCLUSIONS

We have attempted to show how invariant theory has been used to solve problems in coding
theory. There are two stages in a typical application of this technique, which is potentially of much
wider application. Stage I: convert assumptions about the problem (e.g., the code) into algebraic
constraints on polynomials (e.g., on the weight enumerator of the code). Stage II: use invariant theory
to find all possible polynomials satisfying these constraints.

Some unsolved problems are (i) what is the greatest n for which the upper bound of Th. 16 is
attained? In particular, does such a code exist with n =72 (see [69])? (ii) An unsolved question from
[41]: characterize the biweight enumerator of a binary self-dual code with all weights divisible by 4.
(iii) For a given group of matrices, which forms of the Molien series ®(A) correspond to a good
polynomial basis? (iv) Given two different groups of matrices, ® and , which are both representa-
tions of the same abstract group, what is the relationship between (®) and #(9)?
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