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FUNCTIONAL DEPENDENCE
W. F. NEWNS, The University, Liverpool

1. Introduction. It has been the fashion for some time for textbooks on Ad-
vanced Calculus or Analysis to include a section on Functional Dependence, the
general idea being as follows. Real-valued functions fi, f2, - - - , fu of # real vari-
ables are functionally dependent if they satisfy a relation of the form F(fi(x),
fe(x),  « «, fm(x)) =0 identically. Assuming the f; to be continuously differenti-
able, it is claimed that the functions are dependent if and only if the rank of
their Jacobian is everywhere less than m. It is clearly not intended that every
sequence of m functions shall be regarded as dependent (by taking F identically
zero) but just what 4s intended by the definition is usually obscure. In the proof
of ‘only if’ in the above result, it is usually supposed that F is continuously dif-
ferentiable and that its partial derivatives nowhere vanish simultaneously. The
‘if’ statement is usually deduced from the implicit function theorem on the
assumption that the Jacobian has constant rank, and appears to be a local
result. From what is assumed about F in the proof of ‘only if," and proved about
F in the converse result, one can arrive at an appropriate meaning of ‘depen-
dence’ for this particular theorem. This meaning, however, differs from the defini-
tion given by R. C. Buck [2] in one of the few textbooks where the definition
is precise. It also differs from the definition used by A. B. Brown [1], on the
basis of which he proves a result similar to the textbook result, but without the
hypothesis that the Jacobian has constant rank. (In Brown’s theorem there was
an extra differentiability hypothesis on the f;, a hypothesis which was later
weakened by A. Sard [9].)

In view of this, it seems worth while to attempt an exposition of the subject,
starting with an investigation into the relationship between various possible
meanings of ‘dependence.’

2. Definitions. We first make

DEeFINITION 1. Let X, I be sets, (Y.).e1 @ family of sets, and for each +E1 let
f.: X—Y.. Let F be a real-valued function with domain D(F)C [[.er Y.. Then
we say that the f, are F-related iff F(f(x)) =0 for all x€X, where f: X— [[.e1 V.
15 the function having (f.) as components.

It is implied here that if (f,) is F-related then ®(F) contains the range
R () of f.

To obtain a useful definition of dependent (as F-related for some suitable F)
we must not merely exclude the case where F is identically zero: we need some-
thing like the other extreme. The obvious other extreme, namely that F has no
zeros, is clearly inappropriate. In a topological space, however, a function is
identically zero iff its support is empty. We recall the definition.

DEFINITION 2. Let Y be a topological space and F a real-valued function with
domain Y. The support of F is the subset
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supp F = {y € ¥: F(y) # 0}
of Y, where the bar denotes closure in Y.

The support of F is the smallest closed set outside which F vanishes identi-
cally. The other extreme from supp F= is supp F=D(F), but since all we
require of D(F) is that it should contain R(f), it is equivalent for our purposes to
make the following definition, which specializes essentially to that given by
R. C. Buck ([2] p. 226).

DEFINITION 3. Let X, 1 be sets, (Y.) a family of topological spaces and for each
WE1 let fi: X—>Y.. We say that the f. are functionally dependent iff they are F-re-
lated by some F such that supp FO R(f).

Buck’s requirement on F, namely that it should vanish identically on no
nonempty open set, is clearly equivalent.

Having ensured by our requirement on F that the relation satisfied by the
dependent functions is as nontrivial as possible, it is natural to impose further
restrictions on F.

DEerFINITION 4. Let X, 1, (Y.), (f.) be as in Definition 3. Then we say that the
f. are C'-dependent iff they are F-related by some continuous F such that supp

F D&(.

DEFINITION 5. Let X be a set, let m be a positive integer and for each integer 1
(1 1< m) let f; be a real-valued function with domain X. Let p denote « or a posi-
tive integer. Then the f; are CP-dependent iff they are F-related by some F of class C?
such that supp FDO R(f). They are analytically dependent iff they are F-related by
some analytic F such that supp FDO Q(f).

3. Topological characterizations of dependence.

ProrpositioN 1. Let X, I, (Y.), (f), f be as in Definition 3. Then the f, are
functionally dependent iff R(f) has no interior point (in Y==¥.).

Proof. Suppose the f, are functionally dependent and choose F relating them
and such that supp FO®(f). If yo were an interior point of ®(f), then QR(f)
would be a neighborhood of ¥y, on which F vanishes, hence not meeting
{yED(F): F(y)>0}. This would mean y,&supp F contrary to y,ER(f)
Csupp F. We conclude that no such point exists.

Conversely, suppose that ®(f) has no interior point and take F to be the
characteristic function of Y\®(f). Then the f, are F-related, and the support
of Fis the closure of Y\®(f), whose complement is an open subset of &(f), and
hence, is empty. Thus supp F=Y and the f, are functionally dependent.

PROPOSITION 2. If the f, are C'-dependent then R (f) is nowhere dense in Y.

Proof. Let F be a continuous function relating the f, and satisfying supp
FD®(f). Then F vanishes on R(f)N\D(F) and a fortiori on UND(F), where U is
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the interior of W: thus UNsupp F=&. If U were nonempty, it would meet
®(f) (it is a subset of it) and hence meet ®R(f) contrary to ®R(f) Csupp F. We
conclude that U= .

A converse of Proposition 2 is not to be expected without some restriction
on the topologies of the ¥,. We prove only an easy result.

PROPOSITION 3. Suppose that 1 is countable, that each Y, is metrizable and that
®(f) is nowhere dense in Y. Then the components of f are C'-dependent.

Proof. The space Y being metrizable, we choose a metric for it and let F(y)
be the distance of ¥ from ®(f). Then F is continuous and F(y) =0 iff yE &(f).
Thus the components of f are F-related and since ®(f) has empty interior,
supp F=7Y.

For the case of C*-dependence, since this implies C°dependence we know
from Proposition 2 that a nowhere dense range is necessary for C?-dependence.
Conversely:

PRrROPOSITION 4. Let X be a set, m o positive integer and f: X—R™ a function
whose range is nowhere dense in R™. Then the components of f are C*-dependent.

Proof. For any integers n, k (1<k=<m), the equation y,=# defines a hyper-
plane in R™ (y; denoting the kth coordinate of y&R™). All such hyperplanes
divide R™ into open hypercubes, and we denote by Q; the set of all those hyper-
cubes not meeting ®(f). For any integer s>1, we divide R™ similarly into hyper-
cubes by means of hyperplanes with equations

w=n2"*nE Z,1 =k =m)),

and denote by Q, the set of those hypercubes which meet neither ®(f) nor any
element of Q, for r <s. For any positive integer s, we put

Fo(y) = s~ exp (—(sin (2°7yy) sin (2°7yy) - - - sin (2%7ym))~2)

whenever y belongs to some element of Q,, and F,(y) =0 for all other ¥ in R™.
It can be shown that F; is of class C*, hence so also is F= ) ;.; F,. It is clear
that F vanishes on ®(f), and hence that the components of f are F-related; also,
the support of F contains the union of the Q,, hence also the complement of

®(f), and since ®(f) has empty interior we see that supp F=R™

REMARK. By a modified construction it is possible to prove: Given any closed
subset S of R™, there is an F: R*—R of class C*® such that F(y) =0 iff yE.S. See
[1] for details.

For the case of m real-valued functions we see that, for any p, C?-dependence
is equivalent to C°-dependence and to C*-dependence. We thus have only three
distinct kinds of dependence. (That the first two are distinct can be seen by con-
sidering the projection onto the (x, y)-plane of a well-known dense curve on
a torus. Defining
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f: R— R2 by f() = ei(2 + cos (+/2)),

we can show that ®(f) has no interior point but is dense in the annulus
{z2E€C: 1=|3| £3}. For analytic dependence, an extra topological condition
on ®(f) is necessary [1].)

4. Local dependence. We now suppose that X is a topological space. A
family (f.) is locally C°-dependent iff each point of X has a fundamental system
of neighborhoods such that the restrictions of the f, to each of the neighborhoods
are C’dependent. It is clearly enough that each point of X should possess one
such neighborhood. Moreover,

ProPOSITION 5. If Y is metrizable and the components of f are locally C°-
dependent, then for every compact KC X, the components of f | & are C'-dependent.

Proof. Each point of K has a neighborhood U such that f | v has C°-dependent
components, hence such that f[U] is nowhere dense in ¥ (Prop. 2). We can cover
K by a finite sequence (U;) of such U. Thus f[K ], as subset of Uf[U;], is nowhere
dense, and consequently (Prop. 3) the components of f l x are C°-dependent.

We next show that, at least in the most usual case, this kind of dependence
is not yet another kind, but is equivalent to the first kind. The generality is
retained mainly to indicate what is involved.

PROPOSITION 6. Suppose that X is locally compact and o-compact, that Y is a
complete metric space and that f is continuous. Then the components of f are func-
tionally dependent iff they are locally C°-dependent.

REMARK. The definition of functional dependence used by A. B. Brown [1]
is essentially (i.e., modulo the irrelevance of p in C?-dependence) the property
given in Proposition 5, and so (since R" is locally compact) is equivalent to our
local C’-dependence. Proposition 6 asserts the equivalence of Brown'’s definition
with Buck’s.

Proof of Proposition 6. Suppose that the components of f are functionally
dependent. Then ®(f) has no interior point. Let x&X and choose a compact
neighborhood K of x. A fortiori, f[K] has no interior point, and being closed
(as compact subset of a Hausdorff space) is nowhere dense. By Proposition 3,
the components of f| x are C°-dependent. Thus f has locally C°-dependent com-
ponents.

Conversely, supposing that f has locally C°-dependent components, let (K,)
be a sequence of compact sets covering X. By Proposition 5, the components of
f| &, are C°-dependent, hence (Proposition 2) f[K.] is nowhere dense, for every n.
The sets f[K.] cover ®(f), so that ®(f) is meager (Ist. category). Since Y is a
Baire space (2nd. category), ®(f) has no interior point. The result follows from
Proposition 1.

COROLLARY. Let m, n be positive integers, X CR™ and let f: X—R™ be continu-
ous and have functionally dependent components. Then for any compact K CX the
components of f | & are C®-dependent.
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5. Functional dependence and vanishing Jacobians. The basic result of
Brown and Sard mentioned in the introduction is as follows:

THEOREM 1. Let m, n be positive integers, X an open subset of R" and f: X—R™
of class C? for some p=1. Then

(1) <f the components of f are functionally dependent, their Jacobian has rank
less than m at every point of X ;

(i) the converse of (i) is true whenever p=%(m—m-+2) (hence without class
restrictions if m=n).

Before considering the proof of this theorem, we recall that the differential
df, of f is the linear function #: R*—R™ (unique when it exists) such that

&) —£(a) — u(x — a) _

li =0
o= ’
where || || denotes some norm on R". Which norm is used is irrelevant since all

norms on R” are equivalent. The one most frequently used is the Euclidean norm,
determined by ||%||2= > 7., «}, where the x; are the coordinates of x. We shall
also use the Cartesian norm, defined by

l«]| = sup {| 2| :1=7%n}.

The continuity of df, (which is automatic for a linear mapping between finite-
dimensional spaces) is expressed by the existence of MER such that ||dfa(x)||
< M||x|| for all xER». The infimum of all such M has the same property and is
denoted by ||df.||. The partial derivatives of the components of f at @ are the
elements of the Jacobian matrix of f at a, which is the matrix of the linear func-
tion df, relative to the natural bases for R* and R™. The rank of this Jacobian
matrix is equal to the rank of the differential.

In the sequel, we use the following result, called by Dieudonné [3, p. 273] the

RANK THEOREM. Let m, n, X, f, p be as in Theorem 1, and suppose given a
point a ED(f) such that df. is of constant rank r for all x in some neighborhood of a.
Then there exist neighborhoods Ui, U, of 0, a in R", neighborhoods V1, V, of f(a),
0 in R™ and functions g: Uy—Us, h: Vi—V, with the following properties:

(i) g(0)=a, k(f(a)) =0and g, k are one-one and have ranges U, V, respectively,

(ii) g, g7, k, B! are of class C»,

(iii) hofog=dfauv,

Moreover,

(iv) of r=n (¢n which case it is enough to be given that df, has rank n, since then
df» will have rank n on some neighborhood of a: equivalently if df, is one-one) then g
can be chosen to be a translation in R*,

(v) if r=m (equivalently, if df. has range R™), then h can be chosen to be a
translation in R™.

Readers unfamiliar with this coordinate-free treatment are recommended to
consult chapter 10 of [4].
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Proof of (i). Suppose that, for some point ¢ €X, the differential df, of f at a
has rank m. Then we find from the rank theorem that f[U.]=r"1[df,[U1]] is
a neighborhood of f(a), so that f(e) is an interior point of ®&(f). The assertion
now follows from Proposition 1.

The proof of (i) will not be given in full. We shall indicate what is involved,
and supply references.

It is enough to prove that if K is a closed cube in X with sides parallel to the
axes, then f[K] has no interior point. The technique is to show that f[K] lies
in a set of arbitrarily small volume, from which it is obvious that it cannot have
an interior point.

In fact, this proves more, namely that f[K] has measure zero, where ‘mea-
sure’ means either Lebesgue measure in R™ or m-dimensional Hausdorff measure.
We use a cube, because this can be subdivided into nonoverlapping cubes. For
convenience, we use the Cartesian norm on R?, so that the cubes are ‘balls’ in
the sense of this metric. On R™ we use the Euclidean norm since we wish to
estimate volume.

According to the Mean Value theorem,

) | f(@) — f(@)]| = M| —

for all x€K, a €K, where M =sup{||df.]|: *€K} is finite. In other words, dis-
tances are increased by a factor of at most M. Let Q be a cube in K with sides
of length I parallel to the axes. Then f[Q] lies inside a ball of radius M1, hence
of volume Mil™, where M is independent of Q. Letting L denote the length of
the sides of K and dividing K into N* cubes with sides of length L/N, we see
that f[K] lies in a set of volume not exceeding N»M;(L/N)™ which is arbitrarily
small for large enough N provided # >#%. Thus the result is proved for this case.
If m <n we make more specific use of the hypothesis that the rank of the
Jacobian is everywhere less than m. From the compactness of K, it follows that
there exists an increasing function b: R.—R, with lim..o b(¢) =0 such that

(2) |7x) = f(a) — dfu(x — @)|| < &(|x — a|))||x — 4|

whenever x €K and ¢ EK. For fixed @, the points f(a)+df.(x—a) all lie in a
hyperplane H in R™ since ®(df.) has dimension less than m. The above inequality
shows that a cube of side / maps to a set of points no further than /b(!) from H,
hence into a hypercylinder of volume M,l™1b(l). Subdividing into N» cubes of
side L/ N as above, we see that f[K] lies in a set of volume M,L"»N»mb(L/N),
which is now arbitrarily small for large N when m =mn.

The way to cope with the case m <z is to modify the factor N*—™ in the esti-
mate. We need to improve (1) to

@) | f(@) — f(@)]| = M|z — df|2

so that a cube of side ! maps into a ball of radius M(l/2)? and (with account
taken of the rank of df) into a hypercylinder of volume M;l2t1]p(l). This would
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give the estimate M;Lem—a+iIN»—e(n—D=1p(L/N) which is good enough provided
n—g(m—1)—1=0, ie., g=(n—1)/(m—1), but an inequality of the form (3)
for ¢>1 cannot be expected to hold very widely. Clearly, if it holds for all x in
some neighborhood of a point ¢, we must have df, =0. Moreover, when ¢ is an
integer, it suggests that the Taylor expansion of f about a has all terms of orders
1,2, -+, g—1 equal to 0, and that M||x—a|? estimates the remainder term.
We expect therefore to need to assume f to be of class C? as well as to consider
points ¢ at which df,=0. Of course, if df,=0 for all x in a ball, then f will be
constant on that ball, and the image of the ball gives no trouble: our problem is
to cope with {xEX : df,,=0}, a closed set 4 which may be extremely compli-
cated. Before stating the precise result, we observe that the isolated points of any
subset of R* are countable (and so have countable image), whilst the noniso-
lated points of 4 are accumulation points of points where df vanishes, and we
may therefore expect a zero of higher order at such points.

LemMA 1. Let ACX CR*, X being open, and let p be a positive integer. Then
there exists a sequence (A;)ien of subsets of X such that: (1) A CUen A, (i) Ao is
countable, (iii) For any f: X—R of class C? whose differential vanishes on A and
any 1>0, there exists an increasing function b;: Ry—R. such that lim,. b;(€) =0
and

| /@) — f(@)| = b|x — alDl|x — of|?
whenever xEA; and a EA;.
From this, as already indicated, we deduce

LeMMA 2. Let X be an open subset of R*, let f: X—R™ be of class C?, and let
A={xEX:df,=0}. Then f[A] is of measure zero, provided p=n/m.

The slight reduction (from (n—1)/(m—1) to n/m) comes about because the
M in (3) has become a b;(||x —al|) and we can therefore consider balls rather than
hypercylinders. From this we obtain:

LeMMA 3. Let X be an open subset of R*, let f: X—R™ be of class C? and let A,
be the set of points x X at which the rank of df, is r(<m). Then f[A,] has measure
zero provided that p=(n—r)/(m—r).

For =0 this is Lemma 2. For a point ¢ where df, has rank >0, we let X,
be the kernel of df,, Y1 the range of df, and choose supplementary subspaces
X1, Y, in R*, R™ respectively. After a C? change of coordinates (by applying the
rank theorem to m o f, where m; is projection onto Y7) we find that the restric-
tion of the new function f* (which is defined on a neighborhood N of 0) to any
slice of N (formed by taking the intersection with N of some translate of X5)
has two properties: its range lies in the appropriate translate of ¥, and its dif-
ferential vanishes at any point corresponding (by the coordinate change) to a
point of 4,. The dimensions of X,, Y, being n—r, m —r respectively, Lemma 2
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applies to such restrictions to show that f[4,] meets every translate of ¥, in a
set of (m—r)-dimensional measure zero, and the result follows from Fubini’s
Theorem.

When the rank of df, is less than m for all x€X, we have ®(f) =Um f[4,]
and so is of measure 0 (hence without interior point) provided p= (n—r)/(m —r)
forr=0,1, - - -, m—1, i.e., provided p=n—m+1. The slight improvement in
part (ii) of Theorem 1 comes from the observation that Lemma 3 is needed only
for r<m—2. That f[4..-1] has no interior point is immediate from the rank
theorem, 4,1 being an open set on which the differential of f has constant
rank m—1.

References. Lemma 1 was given in [6] Theorem 4.2. Lemmas 2 and 3 were
given in [9]. There is also a full discussion of Sard’s theorem, including Morse’s
lemma, in [10]. Sard’s theorem is the corollary of Lemma 3 (without supposing
the rank of the differential to be everywhere less than m) that the set U™} f[4,]
has measure 0 provided p=#n—m-1. It is used in the study of immersions of
manifolds and in the case m = is relevant to the change of variable in a multiple
integral (cf. [5]).

REMARKS. 1. Although part (ii) of Theorem 1 is deduced from Sard’s results,
these results were designed to prove Sard’s Theorem and do not use the hy-
pothesis of Theorem 1 (ii) that every point is a critical point. Thus, although the
lower bound on p in Sard’s theorem cannot be improved (as shown by an ex-
ample in [11]), that in Theorem 1 (ii) is obviously not the best possible for the
(admittedly trivial) case m=1. Presumably a new approach is needed.

2. Let m, n, X, f and p be as in Theorem 1. Suppose that e&EX and r <m
are such that df, has rank 7 for all x in some neighborhood of a. Then we can
find neighbourhoods U, V of a, b(=f(a)) respectively and F: V—R™r of class
C? such that f[U]CVCR™, Fof|y=0 and dF, has rank m—r. (We have only
to let m be projection onto a supplement of the range of df, and take U= U,
V="Vi, F=m0h in the notation of the rank theorem.) The components of F
therefore constitute m —r independent relations between the components of
f]v: and these relations can be solved to give m—r of the components of f in
terms of the others. This is the usual textbook result, and it is used in the dis-
cussion of total differential equations (cf. [8] p. 141, for example).

It should be noted that without the hypothesis of constant rank these results
may fail. For example, let f= (i, fo): R—R? be defined by

_ e >0
hle) = {o (<0,

fa(t) =fi(—¢). Then f; and f; are analytically dependent (take F(x, y) =xy), but
are not F-related on a neighborhood of the origin by any F of class C! for which
dFyhasrank 1. Nor is there any ¢ such that fi(¢) =¢(f2(¢)) on some neighborhood
of 0.
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6. Analytic dependence. There is no general analogue of Theorem 1 above
for analytic dependence, as is shown by the following example (cf. [7]).
Define f: C2>—C™ for m = 3 by

f(u, ) = (u, v, uves(v), wves(w), - - -, uvem—s(v),

where ¢,(v) = ¢” and e,(v) =e¢;_1(e”). Let F be a complex-valued analytic function
on some neighborhood of 0 in C™ such that F o f vanishes on some neighborhood
of 0 in C2 We shall prove that F vanishes identically.

Collecting terms in the power series expansion of F about the origin, we can
write

F =Y F,,

n=0

where F, is a homogeneous polynomial function of total degree # in m variables.
Composing with f, we have

F(fu, ) = 32 Falty v, wtes(s), - -, ttem_+(0))

n=0

0
= Z M”F”(l, 9, ‘061(‘0), Ct ‘Dem_z('l))),
n=0
a power series in % with coefficients depending on v. Since this vanishes on a
neighborhood of 0 in C?, we conclude that the coefficient of each power of u
vanishes on a neighborhood of 0 in C, hence everywhere in C (since it is an entire
function). Writing .

n—k

Fn(yl’ Y2, © ym) = Z Fﬂk(y2) Vs, © 0y ym)yl ’

k=0

the F,; are homogeneous polynomial functions of total degree % in m—1 vari-
ables and D _7_o Fu (v, ve1(), « * + , vem—2(v)) =0 for all yEC. Hence

E kaﬂk(l’ 61(7’)’ Ct em—2(v)) =0
k=0

for all y&C. Let 9,&C. Then the polynomial function

n

v o 2 vFu(l, e1(0), - -+, em—a(n0))

k=0

vanishes for v =v,+2gmi for all g& Z, since e, takes the same value at all such v.
We conclude that it vanishes identically and since v, is arbitrary, that

Fnk(ly 81(’1)), Tty em—2(v)) =0

for all y&C. If we write w=e¢", this means that
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Fu(l, w, wes(w), - - -, wem—s(w)) =0

for all w& C\{0}, hence for all wE C. But this is precisely what we had eatlier,
but with m—1 for m. It is therefore enough to consider the case m =3, for which

we have
F,,k(l, 'ZZ)) = 0

for all w&EC. This gives Fn, =0 immediately, and completes the proof that F=0.
By defining g: C»—C™ by g(x1, %3, « « - , xx) =f(%1, x2) we see that:

If n=2 and m= 3, the components of an analytic f: C*—C™ whose differential
has rank everywhere less than m may fail to be locally analytically dependent.

For the remaining cases, the positive result does hold. The case m=1 is
trivial. The case m =2, was proved by A. B. Brown in [1]. The case n=1, m>2
follows from the case m =2 by using the first two components.

For the real analytic case, the same discussion as above gives the analogous
negative results. The positive results follow from the complex case.
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BOUNDS ON FUNCTIONS OF MATRICES
P. C. ROSENBLOOM, University of Minnesota and Minnesota State Department of Education

1. Introduction. If f is a function on a set .S of scalars (real or complex) to
the scalars, then the postulate, if Ax =Nx and AES, then

1) f(A)x = fMN)x

uniquely defines the extension of f to the set S, of all #X# matrices with distinct
eigenvalues belonging to S. For various classes of functions f and sets .S formulas
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