





n = 5, we can easily check that neither 3° + 2° = 275 nor 2° + (—1)° = 31 can be
written as Y2 + 5Z2, though 3 + 2 and 2 + (—1) can be. The direct theorem then
must have been as follows.

Theorem A. Let n be a prime of the form 4k + 3. If a + b = x* + ny? for some
X, y, then the same is true of a™ + b".

The case n = 3 is special, because the quotient is already quadratic (see [MK]),
so let us see how to prove this theorem for n > 3. The Disquisitiones notes that the
highest term in Y is 2x®~Y/2 and Z has no term that high. Setting x = 0, we
have 4 = Y(0)? + nZ(0)?; hence the constant term in Y is +2 and the constant
term in Z vanishes. Letting x approach 1, we get 4n = Y(1)? + nZ(1)?, so
Y(1) = 0 and Z(1) = +2. Hence an even number of terms with odd coefficients
occur in each of Y and Z.

Now set x = —a/b; clearing denominators, we get a polynomial identity
expressing 4(a™ + b")/(a + b) as a square plus » times a square. For n = 11, for
instance, the formula in (2) is given explicitly in [DA], and it yields the identity

g1 4 pi ,
«———— = (—2a° + a*b + 2ab? + 2a°b® + ab* — 2b°)
a+b (3)

+ 11(a%b — ab*)’.

Our analysis of highest terms and constant terms shows in general that the
terms in the squared quantities involving purely a or b are even, and there are an
even number of others having odd coefficients. It follows that, whether a and b are
even or odd, the two squares are even. Hence we can divide to get (a" + b")/(a +
b) as a square plus n times a square. The theorem then follows from (1).

This proof was well within Germain’s grasp. Her first letter to Gauss [S,
298-302; BD, 21] specifically singled out the decomposition of (x” — 1)/(x — 1)
for praise, and at the end of her life she published a further note on that topic [G].
Thus we can be fairly sure that Theorem A was indeed her direct theorem. The
converse theorem therefore must have read something like this:

(Supposed) Theorem B. Let n be a prime of the form 4k + 3. If a” + b" is of the
form x?* + ny?, the same is true of a + b.

Germain may or may not have realized that even numbers pose a special
problem. For n = 7, for instance, 2 is not of the form x? + 7y?2, and yet we have
27+ 07 = (4)? + 7(4)%. A related counterexample with n = 7 and a and b both
positive was found by MacKinnon [MK, 350]. More generally, if n is of the form
7 + 16k, we have 8(1 + 2k) = 1 + n. We can then write

1+ (2k)"
1+2k-°

By (1) and Theorem A, this quantity is of the form x? + ny?; but 2 + 4k is not, as
it is less than » and is not a square. This difficulty, however, turns out to be
restricted to the prime 2. Indeed, as we shall see, Theorem B is true for n = 7 so
long as a + b is odd. To give the theorem the benefit of the doubt, we should
therefore assume that a + b is odd.

To simplify a bit more, we can note that factors equal to »n are irrelevant.
Indeed, as n = (0)? + n(1)?, we know by (1) that a product nr is of the form

(2)" + (4k)" =2"73 - 8(1 + 2k) -
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x? + ny? whenever r is of that form. Conversely, if x? + ny? = nr, then we see
that n must divide x. Setting z = x/n, we get r = y? + nz2. Hence we may as well
assume that a + b is not divisible by n. The same then will be true of a” + b", as
a” + b" = (a + b)" mod n. (That is, the difference of the sides is divisible by n.)
Thus we may concentrate on the following version of the converse:

(Supposed) Theorem B'. Let n be a prime of the form 4k + 3, and suppose a + b is
not divisible by 2 or n. If a" + b" is of the form x* + ny?, the same is true of a + b.

3. QUADRATIC FORMS AND THEIR COMPOSITION. To understand the dis-
cussion in Gauss’s letter, we need to review a bit of his theory of quadratic forms. I
shall use the notation common nowadays (see for instance [D], [B], [BS], or [C)); it
is slightly different from that of Gauss, but it does not introduce any serious
conceptual differences.

The forms are polynomials aX? + bXY + cY? with a,b,c all integers. An
integer ¢ is represented by such a form if t = ax? + bxy + cy? for some integers
x,y. Such a form is equivalent to the forms obtained as

a(pX +qY)* + b(pX + qY ) (rX +sY) + c(rX + sY)’

where p,q,r,s are integers and ps — gr = +1 (the condition allowing us to
reverse the integral change of variables). Those forms obtained by such a change of
variables with ps — qr = 1 are called properly equivalent. Since the change of
variables is invertible, a number represented by one form is also represented by all
equivalent forms. The number D = b? — 4ac is called the discriminant of the
form; it is easy to compute that equivalent forms have the same discriminant. A
form is called primitive if there is no nontrivial common divisor of its coefficients,
and again this property is preserved under equivalence.

When the form is positive for all nonzero X and Y, like X% + nY?, then D is
negative. There is then a straightforward procedure (as efficient as the Euclidean
algorithm) to reduce each form to a properly equivalent form satisfying the
inequalities —a <b < a and a < ¢, with a # ¢ when b # 0. Using this, you can
easily see that there are only finitely many different proper equivalence classes
with a given discriminant D. In fact, it is also true that no two of these “reduced”
forms are properly equivalent, and so for any D we can routinely determine the
different proper equivalence classes. For instance, if D = —44, there are four
classes, corresponding to the reduced forms X2 + 11Y2, 3X?% + 2XY + 4Y?,
3X2 - 2XY + 4Y? and 2X? — 2XY + 6Y 2. The first three are primitive.

The simplest way to get a change of variables with ps — gr = —1 is to change
the sign of one variable; this amounts to changing the sign of the central coefficient
b, and the result is called the opposite form. If two forms are properly equivalent,
so are their opposites, and thus we have an operation on classes. Forms in the class
of the principal form X? + nY? (which is (1,0,n) in Gauss’s notation) are
properly equivalent to their opposites. If forms in another class have this property,
the class is called ambiguous, or (in Gauss’s Latin) anceps.

In the previous section, we wrote out a formal identity (1) giving the product of
(x? + ny?) and (x? + ny?). For D = —44, here are two more identities:

(3x2 + 2xy + 4y*)(3x] + 2x,y, + 4y}) = 3r> — 2rs + 4s® with

r=xx;+2xy, +2yx; and s= —xx; +xy; +yx; +2yy,, (4)
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and
(3x% + 2xy + 4y?) (3x] — 2x,y, + 4y7) = u® + 11? with
u=3xx, —xy, +yx; —4yy;, and v =xy, +yx;. (5)

We can think of these as ways of composing two forms with the same D to get
another one. Such expressions exist in general, but there is a very subtle difficulty
involved. Clearly, for instance, we could take (4) and change the sign of y,, getting
a valid identity with corresponding changes of signs in the expressions for r and s.
Thus we would get expressions of the product in (5) by the two inequivalent forms
X2+ 11Y? and 3X? — 2XY + 4Y2. Gauss discovered that if we put suitable sign
restrictions on the coefficients in the expressions of the new variables like r and s,
then in fact the proper equivalence class of the form giving the product will
depend only on the proper equivalence classes of the two factors. Thus we get a
composition of proper equivalence classes. (Formulas (4) and (5) satisfy the
restrictions.) A composite of primitive classes is primitive, and in modern terms the
primitive proper equivalence classes form a commutative group under composition.
The identity element is given by the principal class, and the opposite of a form is in
the inverse class. Composing a form with itself is what Gauss called duplication.
Formulas (4) and (5) show that the group for D = —44 is cyclic of order 3.
Finally, we need one fact about representations.

Lemma. Let M be relatively prime to 4n, and write M = K>M, where M,, has no
repeated factors. Then M is represented by some form of discriminant —4n if and
only if there is some number r with r*> + n divisible by M,,.

Proof: If such an r exists, then the form MyX? + 2rXY + ((r> + n)/My)Y? has
discriminant —4n and represents M (with Y = 0). For the converse, say M =
ax? + bxy + cy? with b? — 4ac = —4n. Clearly then b is even. Let d be the
greatest common divisor of x and y, and find s and ¢ with sx + ty = d. Direct
computation using our expression for M shows that

M(as® — bst + ct?) = (s(xb/2 + yc) — t(xa + yb/2))’
+(ac — b2/4)(sx + 1y)°.

Dividing by d? and observing that ac — b?/4 = n, we see that n plus a square is
divisible by M /d?* and hence by M,,.

The converse part of this argument was given right at the start of Gauss’s
treatment of forms [DA, Art. 154]. Still earlier material [DA, Art. 105] shows that
such an r exists if and only if, for every prime p, dividing M, there is some r; with
r? + n divisible by p,. A simple count of powers now shows the following result:

Theorem C. Let M = BC be a number relatively prime to 4n. If M and B are
represented by forms of discriminant —4n, so is C.

This may well have been in Germain’s note. Observe that every number
represented by a non-primitive form has a factor in common with the discriminant,
and so only primitive forms will be candidates for representing M. If there is just
one proper equivalence class of primitive forms (necessarily the principal class),
then of course it follows that when M and B are of the form x? + ny?, the same is
true of the other factor C. This is true for n =3 and for n = 7, and thus
Germain’s Theorem B’ is true when n is 3 or 7.
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4. LOCATING THE ERROR. The lemma above shows that M, will be repre-
sented by a form of discriminant —4n precisely when the primes in it are so
represented. When a prime number (different from 2 and n) is represented by a
form of discriminant —4n, it is represented by forms in a unique equivalence class
[DA, Art. 168]; but that usually means forms in two (inverse) proper equivalence
classes. Occasionally, of course, only one proper class occurs; this happens pre-
cisely when the class is (principal or) ambiguous. We can use the representations
of the primes to build up a representation of a general M by compositions. Since
we can choose either of the two classes (when they are distinct), we usually get
several different classes of forms that represent the same number M. It is the
distinction between equivalence and proper equivalence that makes this happen,
and thus it is one of the more subtle parts of the theory. And it was here that
Germain made her mistake. Gauss says explicitly that she tried to prove something
like this:

(Supposed) Theorem D. If M = BC is prime to 4n and both M and B are
represented by X? + nY 2, then so is C.

As we saw, she could correctly have proved that C is represented by some
primitive form of discriminant —4n. To derive Theorem D (and thus Theorem B'),
she would then have to show that this form was in the principal class. It appears
that she tried to do this using the group structure on the classes. As Gauss says, it
is indeed true that there is no formal composition for any other form; that is, if we
have an identity

f(x, y)(xF + ny?) = u? + m?

with u and v bilinear combinations of x, y, x,, y, as before, then f(x, y) must be
in the principal class [DA, Art. 249]. But because representations of the same
number can be built up to come from different classes, the formal argument fails
to establish a corresponding result for specific numbers.

Following Gauss’s suggestion, we can easily find explicit counterexamples to
Theorem D as soon as we find an n where not all the classes are ambiguous. The
first such case is n = 11. Take, for instance, the first three primes represented by
3X2 + 2XY + 4Y? (and hence not by X? + 11Y2); they are

3 =3(1)% + 2(1)(0) + 4(0)>
5=3(1)%+2(1)(=1) + 4(-1)° (6)
23 = 3(1)° + 2(1)(2) + 4(2)>.

In Gauss’s notation at the end of Section 1, these numbers will be f, g, and A.
Direct composition of the first two, as in (4), gives us

15=3-5=3(-1)"—2(-1)(=2) + 4(-2)".
Composition of that result with the expression for 23, as in (5), gives us
3-5-23 = (13)° + 11(—-4)>.
But we can reverse a sign to get the other expression

5=3(1)> - 2(1)(1) + 4(1)%
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and composing this with the expression for 3, as in (5), gives
15 = (2)% + 11(1)°.

Thus both 15 and 15 - 23 are represented by X2 + 11Y 2, but 23 is not.

This example also shows that, if we have primes represented by 3X? + 2XY +
4Y 2, we can combine them either in pairs or in triples to get numbers represented
by X? + 11Y2 By (1), then, it is easy to see that we actually have the following
result:

Theorem E. Let M be a number that is not divisible by 2 or 11. Suppose
M =p, - p, - p, is a product of primes each representable by a form of discrimi-
nant —44. Then M is represented by X? + 11Y? except when there is exactly one of
the p, not represented by X* + 11Y2.

5. LOCATING A COUNTEREXAMPLE. We have shown by example that the
supposed Theorem D is false. It was used in the argument for Theorem B’, and
thus that proof is invalid, but we do not yet know that Theorem B’ is false. How
might Gauss have searched for a counterexample? It would be most natural to try
following the same pattern; that is, we should try to take a + b to be a prime
represented by 3X2 + 2XY + 4Y 2 We know (a'! + b'')/(a + b) is represented
by X2 + 11Y 2, and Theorem E shows that we just need to have it divisible by
some other prime p that is represented by 3X 2 + 2XY + 4Y 2. We can also recall
Fermat’s result (see [WL]) that such a p will have to be of the form 11k + 1. (The
point is that there is an x # 1 with ax = —b mod p; then if p divides a'' + b'!,
we have x!' = 1mod p. But x?~! =1 by Fermat’s theorem, and so 11 divides
p — 1.) Thus our previous work gives us the following way of searching for an
example:

1) Take a prime represented by 3X2 + 2XY + 4Y 2, and write it in all ways as
asum a + b.

2) Take another prime p of the form 11k + 1 represented by 3X?2 + 2XY +
4Y?,

3) Test whether a!! is congruent to —b'! modulo p.

When the congruence holds, then both p and a + b will divide a!' + b!!, and
Theorem E will tell us that a'' + b!! is represented by X2 + 11Y 2.

The first primes represented by 3X2 + 2XY + 4Y? are 3, 5, and 23. The first
ones also of the form 11k + 1 are 23 and 67. Obviously a + b = 3 and p = 23
should be tried first. The only decomposition is ¢ = 2, b = 1. It is easy to compute
powers modulo a small number, and we find that 2'! = 1 mod 23. Thus there is no
example there. Similarly, we see that 4!!=1=1"'mod23 and 3! =1=
2 mod 23, so we have no examples with p = 23 and a + b = 5. We next move to
p = 67, trying first a + b = 3 and then a + b = 5. There are still no solutions. But
we have a wider range of possibilities with a + b = 23; and if we start from b = 1
and work our way up, we do find an example, at b = 8, a = 15. I repeat that
checking these facts requires only computations of powers modulo 67, which are
quite easy. (They are trivial if you have once computed a “table of indices” modulo
67, as described in [DA, Art. 58] and given in [DA, Table 1].) Thus relatively simple
computation has led us to the following result, which we have fully established:

Theorem F. The number 15' + 8! is represented by X2 + 11Y 2, but 15 + 8 = 23
is not.
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To confirm that we have been on the right trail, we can now observe that the
one thing Gauss mentioned about his counterexample was that (15!! + 811) /23 is
divisible by 67.

6. COMPUTING THE COUNTEREXAMPLE. Gauss could have stopped at this
point in his work, but it is not surprising that he did not. He was always fond of
computation, and the counterexample will clearly be more immediately convincing
if it is displayed rather than deduced. Furthermore, he had available a quite simple
method for finding the expression of 15! + 8!! as a square plus 11 times a square;
it merely applies suitable compositions to the formula that started the whole
discussion.
Let us recall what we know. First, we have

151 + 81 =23-67-M
for some integer M. (You can compute that M = 5618653987.) If we can
represent M as 3X?2 + 2XY + 4Y 2, then we can compose that representation with
representations of 23 and 67 to get 15! + 8! as X2 + 11Y?2.

It is in fact possible to take the value of M and solve this representation
question from scratch (see Section 7.2). But we can do much better here, because
we already have an expression for 67M. Indeed, setting @ = 15 and b = 8 in
formula (3) above, we get

67TM = (15" + 811) /23 = (—227723)% + 11(171780)°. (7)

Now we can work backwards: if we have M = 3x2 + 2xy + 4y?, and 67 =
3(3)2 — 2(3)(4) + 4(4)?, composition gives us the expression 67M = u? + 11v? with
u=>5x—13y and v = 4x + 3y. We can solve to get x = Bu + 13v)/67 and

= (—4u + 5v)/67. Having (7), we try u = +227723 and v = +171780 to find
values making x and y integers. Taking both u and v positive, we get the solution

M = 3(43527)% + 2(43527)(—776) + 4(—776)". (8)

All we need to do now is to compose the terms differently, first combining

23 =3(1)> + 2(1)(2) + 4(2)* and

67 = 3(3)> + 2(3)(—4) + 4(-4)°
to get

2367 = 3(7)° — 2(7)(—17) + 4(—17)%.
Composing this then with (8), we get
15" + 811 =23-67-M = X%+ 11Y?2,
where
X = 3(43527)(7) — (43527)(—17) + (=776)(7) — 4(=776)(—17) = 1595826
and
Y = (43527)(—17) + (=776)(7) = —745391.

Thus we have recovered exactly the example Gauss gave, and we have done it by
methods all drawn from [DA].

7. SIDE ISSUES

7.1. We can find a substantially smaller example if we are willing to allow one of a
and b to be negative (there is nothing gained by taking them both negative).
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Indeed, if we resume the search in Section 5 with p =23 and a + b = 3, we
observe that 4! = 1mod23. Then we deduce as before that 4! + (=1 is
represented by X2 + 11Y'2, while of course 3 is not. Readers might enjoy using the
method from Section 6 to find the explicit representation

414 (=) =3-23-60787 = 822 + 11(617)°.

It is also possible to find another positive example by continuing the search in
Section 5 with a + b = 23 and p = 67; one finds that a = 13,5 = 10 also works,
and we have

13" + 10" = 1892160394 037.

This is a little smaller than our previous example, but still of the same order of
magnitude. The procedure of Section 6 shows us that

13 + 101

3 = (125212)° + 11(77805)7,

whence
131 + 101
2367
and finally

= 3(20703)% + 2(20703)( —1669) + 4( —1669)*

13! 4 10" = (661539)% + 11(363 634)°.

7.2. We can use the value M = 5618653987 from Section 6 to illustrate the
method Gauss gives [DA, Art. 322] for finding representations by 3X? + 2 XY +
4Y? from scratch. The first step is rather like that in Section 6; we observe that
such an expression will give us

3M =Z?+ 11Y? with Z=3X+Y.
Thus it will suffice to find such representations of 3M. There is an obvious bound

Yl < y3M/11 < 39146,

and any particular Y can be checked to determine whether 3M — 11Y? is a
square, but there are too many cases to check by hand.

Gauss’s method now is a sort of sieve which he called the use of “eliminating
numbers” and which is now called Gaussian exclusion [B, p. 194]. We take various
small moduli E and determine conditions on Y modulo E that follow from the
fact that 3M — 11Y? is congruent to a square modulo E. For instance, in our case,
take E = 8. We have Y2 = 0, 1,4 mod 8, while we have 3M = 1mod8 and — 11 =
5mod8. Thus 3M — 11Y? = 1,6,5mod 8. As only 1 among these is a square
modulo 8, we see that Y2 = Omod 8, which tells us that Y is divisible by 4.
Similarly, if we take E = 25, we have 3M — 11Y? = 62(1 — Y?)mod 25, so we
want 1 — Y? to be congruent to a square. The squares modulo 25 are 0, + 1,
+4, 4+ 6, + 9, + 11. The condition on 1 — Y2 forces Y? = 0,1 mod 25, so we see
that either Y is divisible by 5 or Y = +1mod25. Combining this result with
divisibility by 4, we see that Y must have one of the following three forms:

Y=20W, Y=100W + 24, or Y = 100W + 76.

Clearly this analysis has reduced the number of values to be checked; in the last
two cases, for instance, we have W < 320. We can continue exclusion with other
moduli until we feel the number of values is reasonable for checking. Gauss
indicates that he was comfortable using up to 9 or 10 moduli, and that number of
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steps will suffice here. For Y = 100W + 24, for instance, we may use moduli 3, 7,
13, 17, 19, 23, and 29; that leaves 10 values of W. The test at modulus 31
eliminates all W except 222, 239, and 304. These can be checked individually, and
it turns out that none of them work. Similarly, for Y = 100W + 76, the moduli 3, 7,
13, 17, 19, 23, and 29 leave 12 values of W, and the test at modulus 31 eliminates
all W but 7, 33, 126, 239, and 315, which we can check. It turns out that W =7
works; we get

3M = (+129805)° + 11( +776)°,.

whence
M = 3(43527)% + 2(43527)(—776) + 4(—776)".

That, of course, is the solution we found earlier. If we want all solutions, we can
attack the other case. For Y = 20W, we have W < 1859, and testing with the
primes through 31 still leaves 25 values. The test at 37 cuts this down to 12 values,
and the one at 41 then restricts W to be 538, 943, 944, 1541, or 1553. Again we can
check these, and it turns out that 1553 works; we get

3M = (+79019)° + 11( +31060),

whence

M = 3(36693)% + 2(36 693)( —31060) + 4( —31060)°.

Thus in fact there is also another representation of M. If we run through the
computations for it, we get another expression for our basic counterexample:

151 4+ 8! = (935166)> + 11(841201)°.

7.3. The computations in 7.2 could be shortened (using composition of forms) if
we knew a factorization of M. But, as Gauss pointed out [DA, Art. 333], we can
actually reverse that procedure and use our two different representations by
3X?% + 2XY + 4Y? to find factors of M. The proof of the lemma before Theorem
C shows that each such representation can be rewritten to give a number whose
square is congruent to —11 modulo M; specifically, if rX + sY = 1, then

[r(X+ 4Y) — s(3X + Y)]2 = —11mod M.

For the solution X = 43527, Y = —776, the Euclidean algorithm gives r =
—153,s = —8582, and we get the congruence

(1107801791)° = —11mod M.
The solution X = 36693, Y = —31060 similarly gives the congruence

(3256684 733)> = —11mod M.

Now whenever u? = v?> mod M, each prime dividing M divides either u + v or
u — v; and so long as u # +v mod M, neither of u + v is divisible by M itself.
Thus we can find nontrivial factors of M as the greatest common divisors of u + v,
M and of u — v, M. In our case, the Euclidean algorithm shows that the greatest
common divisor of 3256684733 — 1107801791 and M is 235159, while that of
3256684733 + 1107801791 and M is 23 893. And indeed you can check that

M = 235159 - 23893.
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Is Algebra Useful?

I would like to share with you (and if you deem useful with the AMM readership) somc
considerations that occurred to me upon reading an article in the latest AMM issuc.

At the end of his interesting article “Two-Year Magazine Subscription Rates” (Vol 100, #1, January
1993), Underwood Dudley states that “...it is better to present mathematics to students as a glorious
adventure for the mind. .. That it has uses is important, but incidental. Few students will use it, but all
can see some of its glory.”

My initial reaction to this was one of incredulity: hasn’t the author noticed that the majority of
people fail to identify the glory of mathematics and are in fact proud to profess a deep disdain for it?
That most people tolerate the math requirements in school only because of educators’ assurances that
one day those mathematical skills will be useful? Expecting students to take mathematics course to
appreciate the glory of the subject would not be much different from cxpectling us to take pottery
courses to appreciate the glory of human manipulative creation. Some would enjoy it (including me)
but most would object to the rationale for imposing such an experience.

My dismay, however, slowly turned to keen interest in what this statement really means: finally
somebody is realizing, and admitting, that much of what we mathematicians have imposed on society as
an essential part of knowledge can in fact be dispensed with; that people can live meaningful,
productive and happy lives without using any mathematics beyond grade 3; that we should start
thinking seriously about who needs what mathematical knowledge; and that we should start providing
real rationales for each of the topics we want to have taught at any level.

Debates have raged recently between popular media and mathematicians about whether algebra is
really useful. The arguments brought forward in defense of algebra were quite convincing to me, until I
realized that I understood them because I am a mathematician, but they would not have convinced me
if I weren’t.

Hopefully some of us have initiated a move away from our ivory tower and towards the real world,
where people use math, high power math, when necded, but do away with it whencever possible. Do you
think that I am wrong? Then ask yourself when was the last time you used mildly advanced techniques
for any purpose that had nothing to do with your job.

I thank you for your attention and I look forward to hearing from you.

Dr. Roberto Bencivenga
Learning Assistance Centre
Red Deer College

Box 5005

Red Deer, Alberta

Canada, T4N SH5
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