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A numerical treatment of angle constructions is an excellent aid in various
geometric procedures. This numerical approach goes well beyond the standard
constructions of 30°, 45°, and 60° angles along with bisectors, perpendiculars, and
certain regular polygons.

Many interesting facts in angle construction stem from a study of algebraic
equations. An ideal place of beginning involves a fundamental theorem from the
theory of equations. This theorem reads, “If a cubic equation with integral
coefficients has no rational roots, then none of its roots can be constructed with the
Euclidean instruments.” Proofs of this theorem appear in various textbooks. No-
table among these references is the work of W. V. Lovitt entitled Elementary Theory
of Equations (chapter 14).

Building on this fundamental theorem, the trigonometric identity cos 34
=4 cos’4 — 3 cos A leads to the conclusion that a 20° angle cannot be con-
structed. Letting 4 = 20°, the equation becomes cos 60° = 4 cos>20° — 3 cos 20°.
If cos 20° is replaced by x, the equation 4 = 4x> — 3x or its equivalent 8x> — 6x —
1 = 0 results. This equation has no rational roots. Therefore x, which is cos 20°,
cannot be constructed. For if a 20° angle is constructible, then a right triangle is
constructible whose acute angles measure 20° and 70°. If this right triangle has a
unit hypotenuse, the side adjacent to the 20° angle would measure cos 20° (a
contradiction as cos 20° would thus be constructible). More significantly, as a 60°
angle can be constructed yet a 20° angle cannot, it follows that a general Euclidean
method of angle trisection is impossible.

An instructive activity is to use the above result to decide the possibility of
constructing angles having integral degree measure. Realizing that angle duplica-
tion, triplication, etc., are valid constructions, it can be asserted that a 1 degree
angle is not constructible. For if so, by repetition, a 20 degree angle could be
formed. A similar discussion follows for a 2 degree angle. It is interesting that the
degree, which is the unit of sexagesimal measure, is not constructible. An
analogous procedure shows that the smaller units called the minute and the second
are neither constructible.

The possibility of constructing a 3 degree angle is established by first consider-
ing the regular pentagon construction. This regular pentagon construction also
appears in the Lovitt reference mentioned above (chapter 14). Subtracting the 72
degree angle thus formed from a 75 degree angle (obtained from the summing of
the constructible 30 degree angle and 45 degree angle) gives the desired 3 degree
angle.

75



If an angle has integral degree measure, this measure will be of the form 3» or
3n+1 or 3n+2. If of the form 3, the construction is clearly possible by
duplication, triplication, etc., of the 3 degree angle. The two other forms represent
impossible constructions. If an angle whose measure is of the form 3x + 1 could be
constructed, then a 1 degree angle could likewise be constructed (by subtracting the
angle measuring 3n degrees). Of course, the 1 degree angle construction was shown
impossible. A similar discussion follows for angle measures of the form 3n + 2.

These conclusions give a partial answer to the question of regular polygon
constructibility. The following illustrate this point:

Example 1. The regular pentadecagon (15 sides) is constructible. This follows as
the central angle has integral degree measure of the form 3n, that is, 24°.

Example 2. 'The regular nonagon (9 sides) is not constructible. This follows as the
central angle has integral degree measure not of the form 3n, that is, 40°.

More generally, a regular polygon of integral central angle measure is construct-
ible if and only if that measure is divisible by 3. As the interior angle is always the
supplement of the central angle, its measure must also be divisible by 3.

The case for non-integral but rational measures is also of interest. To illustrate, a
221 degree angle can be constructed (by bisecting a 45 degree angle), but a 234
degree angle cannot be constructed at all. This latter angle would imply, by
duplication, the construction of a 47 degree angle. This we have seen is impossible.

Next consider an angle whose measure is the positive rational number p/gq.
Moreover, let p and g be positive integers (the fraction p/g may be improper). It
follows quickly that the angle construction is possible only if the numerator p is
divisible by 3. Otherwise, multiplication by ¢ (a valid construction) would result in
an angle with integral measure p not divisible by 3. For example, one could say
immediately that the angle measuring 4/7 of a degree is not constructible.

If the numerator is a multiple of 3, the angle may or may not be constructible.
Clearly the angle measuring 3/2 degrees can be formed by bisecting a 3 degree
angle. Various other angle sizes follow by repeated bisecting (3/4, 3/8, 3/16, etc.).
Consider the possibility of constructing the angle measuring 3/7 of a degree. To
further pursue this problem, use will be made of the result that a regular polygon
having a prime number of sides p can be constructed if and only if p is of the form
2?" + 1. This remarkable result also appears in the literature; an excellent treatment
is given in the work of Louis Weisner entitled Introduction to the Theory of
Equations (chapter 9, pp. 165-172). Numbers of the form 2* + 1 are called Fermat
numbers. If n assumes the values 0, 1, 2, 3, and 4, then 2%+ | assumes the
respective prime values of 3, 5, 17, 257, and 65537. Hence the regular polygons of 3
sides, 5 sides, 17 sides, 257 sides, and 65537 sides are all constructible. There may
be no primes of the form 22" + 1 beyond n = 4; this is presently a standing problem
in mathematics. On the other hand, a regular seven-sided polygon cannot be
constructed as 7 is a prime not of the form 22"+ 1. Suppose now that an angle
measuring 3/7 of a degree can be constructed. As an angle measuring 51 degrees
can be formed (note that 51 is divisible by 3), an angle measuring 513 degrees
would thus be constructible. This angle is precisely the central angle of a regular
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heptagon (seven-sided polygon). Since this polygon construction is impossible,
neither can an angle measuring 3 /7 of a degree be constructed. It also follows from
the above discussion that there is no general Euclidean method for dividing an
angle into seven congruent parts.

A crucial question is “For what positive integers r is the angle measuring 3/r
degrees constructible?”. A well-known result (see Weisner, pp. 165-167) assists at
this point: a regular polygon of n sides is constructible if and only if n is of the
form 2%(k > 1) or of the form 2™(p,)(p)(ps) - - - (p,) where m is a non-negative
integer and the p;’s are distinct Fermat primes.' This last mentioned product will be
called a Fermat product.

Note: A concise way of describing this condition is to say a regular n-sided polygon

(n > 2) is constructible if and only if ¢(n) is a power of 2. In this remark, ¢(n) is the
symbol for the familiar Euler ¢-function (see the preceding reference).

Clearly, the angle measuring 3/r degrees is constructible if » is a power of 2. More
generally, consider any positive integer » and let 3/r = 360/s. In this form, it is
evident that 3/r is constructible if and only if s is a Fermat product. For if s is of
this form, 360/ s is constructible as previously noted; this stems from the construct-
ing of the regular s-sided polygon. If s is not of this form the construction is
impossible. Otherwise a regular polygon of s sides could be constructed where s is
not a Fermat product. Rather simply, the angle of 3/r degrees is constructible if
and only if 120r is a Fermat product.

This matter of constructing the angle of 3/r degrees is far-reaching in con-
sequence. It permits disposing of the rational constructibility problem entirely. If
the angle measure reduces to the form 3/r, the problem is solved as shown above.
If not, the following considerations remain:

Case 1. Suppose the angle measure reduces to the form x/y where x is not a
multiple of 3. This would imply by repetition the construction of an angle of x
degrees. Of course, this is impossible as x is an integer not divisible by 3.

Case 2. Suppose the angle measure reduces to a form where the numerator is a
multiple of 3. Represent this measure by the fraction 3n/r where n and r are
relatively prime (there is no loss of generality in this restriction). We will show that
3n/r is constructible if and only if 3/r is constructible.

Proof.

1. Suppose (n, r) = 1; further suppose that the angle of 3n/r degrees is construct-
ible.

2. Then (3n, 3r)=3.

3. Expressing the greatest common divisor as a linear combination of 3n and 37, it
follows that a(3n) + b(3r) = 3.

4. Now, a(3n/r)+ b(3r/r) =3/r. Clearly, each member of the left side of the

' equation represents a constructible angle. If either a or b is negative, an angle

subtraction is implied (a valid construction).

! If the only Fermat primes are the five shown above, it can be stated that there are just 31 constructible
regular polygons having an odd number of sides. This follows as sC, + sC, 4+ sC3 + sC4 + sCs = 31.
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5. Thus, if 3n/r is constructible, then 3/r is constructible. By contraposition, if
3/r is not constructible, then 3n/r is not constructible.

6. The converse of step 5 is obvious; if 3/r is constructible, then n(3/r) is
constructible by repetition.

The foregoing discussion can be expressed rather concisely. An angle of rational
degree measure is constructible if and only if that measure can be written in the
form 3n/r where (n, ¥) =1 and 3/r is constructible. Again, 3/r is constructible if
and only if 1207 is a Fermat product.

An illustration reinforces the rule for the rational case. Consider the problem of
constructing an angle measuring 8% degrees. One could go through the linear
combination procedure, thus writing 3/5 as 45/5 — 42/5. If 42/5 is constructible,
then 3/5 is also (or by contraposition, if 3/5 degrees is not constructible, then
42 /5 degrees is not constructible). As 3/5 = 360/600, and 600 = (2%)(3)(5%), which
is not a Fermat product, it follows that the angle of 3/5 degrees cannot be
constructed. Neither then can the angle of 82 degrees be constructed. Taking the
alternate but more concise approach 8% =42/5=(14)(3/5). As 14 and 5 are
relatively prime, and the angle of 3/5 degrees is not constructible, it is thus
established that the angle of 82 degrees cannot be constructed.

An abundance of fascinating sidelights stem from the above discussion. The one
now given concerning the Morley triangle is typical.

The trisectors of the angles of any triangle intersect in points which are the
vertices of an equilateral triangle (see Figure 1). Such an equilateral triangle is
called the Morley triangle of the given triangle (Frank Morley, 1860-1937). An
excellent article on this subject appeared in the September 1970 issue of the
MATHEMATICS MAGAZINE; it is listed among the references. This triangle is a very
impressive figure, rarely talked about in elementary mathematics. As angles in
general cannot be trisected by the use of the unmarked straightedge and compass, a
serious question arises, namely, “Can any constructible examples of the Morley
triangle be found?”. The answer to this question is “yes”. In the discussion that
follows, consideration will be given only to those triangles whose angles have
integral degree measure. The reader may wish to pursue the matter more
thoroughly (say through the rational case).

C

Figure 1. The Morley Triangle Configuration.
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First, a theorem: A constructible angle of integral degree measure can be trisected
if and only if that integer is divisible by 9. If 9 is a divisor of the angle’s degree
measure (call this measure 9n), the trisection follows as one-third of 9n is equal to
3n. As mentioned earlier, an angle whose degree measure is of the form 3n can be
constructed. If the degree measure of the constructible angle is not divisible by 9, it
will be either of the form 9n + 3 or 9n + 6. Proceeding by cases, one-third of
9n + 3 is equal to 3n + 1. The constructibility of 3n + 1 would imply that of 1
degree, which (as shown earlier) is not possible. In like manner, the other case is
rejected.

Consider now the constructible cases of angle trisectors, where the angles of the
given triangle have integral degree measure. Let the measures of the angles 4, B,
and C be respectively 9x,, 9x,, and 9x,. As 9x,; + 9x, + 9x; = 180, then x, + x, +
x5 = 20. This last equation has various solutions in positive integers. For example,
if x, =6 and x, = 6, then x; = 8. The angles of the resulting triangle measure 54°,
54°, and 72°. Clearly each of these may be trisected as the trisections are
respectively 18°, 18°, and 24° (multiples of 3°). It is fairly simple to list all cases of
triangles based on positive integers satisfying x, + x, + x; =20, thus having a
more thorough list of constructible Morley triangles. This list will include the
handiest of examples of a triangle whose Morley triangle is constructible, namely
the right isosceles triangle.

It should be noted that the non-constructibility of the trisectors of an angle does
not imply the non-existence of those trisectors. In other words, every triangle has a
Morley triangle.

Should the Morley triangle be constructible for any triangle whatever, a general
method of angle trisection would exist. This, as previously shown, is not the case.
For example, it is not possible to construct the Morley triangle of an equilateral
triangle. If so, the 60° angles of the equilateral triangle could thus be trisected,
producing the non-constructible 20° angle in the process.?

Arguments thus far in the over-all discussion have centered around angles of
rational degree measure. The case for angles of irrational degree measure is more
difficult. In the concluding part of this note on angle constructions, only one part
of the irrational case will be considered, namely the radian.

Clearly, the angle measuring one radian has an irrational degree measure; this
familiar measure can be represented by 180/« degrees. As stated earlier, the basic
unit of sexagesimal measure, the degree, is not constructible. A similar conclusion
follows (surprisingly perhaps) for the basic unit of radian measure. The proof for
non-constructibility involves a theorem of Lindemann’s (C. Ferdinand Lindemann,
1852-1939). This theorem, appearing in the listed reference Famous Problems and
Other Monographs, states that x =sin y (or equivalently, 2ix = e” — e~?) has no
solution in which x and y are both algebraic, except x =0, y = 0. These angle
measures are in radians. Note: a number is algebraic if and only if it can occur as a

2 The side s of the Morley triangle of the triangle ABC is given by s = 8(R)(sin 4 /3)(sin B/3)(sin C/3),
where R is the circumradius of triangle ABC. It can be shown that for a 30°-60°-90° triangle and R = 1
that s = 2(cos 10°) -3 (a non-constructible length).
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root of an algebraic equation; the number is transcendental otherwise. Moreover,
all transcendental lengths are non-constructible (Weisner, pp. 159-161); this in-
cludes the number pi (7). As the number 1 is algebraic, it follows that x =sin | is
not algebraic, and hence not constructible. As sin | is not constructible, neither is 1
radian constructible.

Since every rational multiple of 1 is algebraic, it follows by the preceding
theorem that no rational multiple of a radian can be constructed (except of course
the zero multiple). The theorem is far-reaching; it establishes even that no algebraic
multiple of a radian (except zero) is constructible.

If the mil were equal to exactly one-thousandth of a radian, its non-
constructibility would immediately follow. Actually, this is an approximation. The
mil is defined to be 1/6400 of a revolution. In degrees, this measure is exactly
360,/6400. As 6400 is equal to (28)(5%), neither is the mil constructible. Note that the
factorization above is not a Fermat product.

A number of interesting observations stem from the consideration of the
possibility of constructing one radian. If this construction were possible, the
associated sector of the unit circle would have an area of 1/2. Such a sector could
thus be squared, i.e., a square equal in area to this sector could be constructed.
Though this is hardly the “squaring of a circle,” it is nevertheless an impressive
consequence of assuming radian construction. Such a remark raises the question
(not pursued in this article) “for what constructible central angle measures can the
associated sector of a circle be squared?”.

Note: Lindemann’s theorem establishes the transcendence of «. Since 1 = sin(«/2) and 1
is algebraic, it follows that 7 /2 (and hence =) is transcendental. Should a method exist for
squaring a circle, then the unit circle with area 7(1)> = 7 would give rise to the square
with side measuring V7 . As squaring a line segment length is a valid construction, 7 would
thus be constructible. The known impossibility of constructing = hence establishes that
squaring a circle is impossible.

The preceding account of constructions calls attention to the surprising im-
possibility of constructing (with Euclidean tools) the conventional units of angle
measure (the degree, minute, and second, along with the radian and the mil). One
may naturally wonder about the desirability of using a non-constructible unit. The
degree choice is of interesting motivation and can be pursued in the various
accounts of the history of mathematics. Likewise the radian choice has computa-
tional and simplifying value far outweighing the non-constructible feature.

Additional angle measure types could be included. Hopefully the few above
prove adequate to point out the importance of this supplementary, numerical
approach to angle constructions.
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