For 1 take it that a justification for a test item must be that it asks the sort of
question which the student is likely to meet when he is doing mathematics. In 35
years of doing mathematics as a professional, I have never yet met a situation in
which I knew that the answer was one of four possibilities and I simply had to
make the correct choice. Moreover, were 1 ever placed in such a situation
artificially,! it is highly unlikely that I would use as a method of solving the
problem the method appropriate to a situation in which I had not been told that
the correct answer figured in a set of four potential solutions.

I have given about six especially pernicious features of a traditional curriculum.
I do not wish to weary the reader by prolonging the list, but I do want to say that
the list is by no means complete. Let this list, however, suffice to establish my thesis
that math avoidance is a natural reaction to so much of the experience of the
student in situations euphemistically described as the learning of mathematics.

! The ‘ink-blot’ problem is an example of an artificial situation for a multiple choice question of which I
entirely approve as a means of instilling mathematical thinking. An arithmetical problem and, say, four
possible solutions are displayed with certain digits obscured by ink-blots. The student must determine,
by elimination, which solution is correct.

In Part 2, Peter Hilton discusses the constituents of a sound mathematics
education and deals with the current situation of mathophobic adults.
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In recent years, a considerable amount of attention has been given to the use of
computers and calculators in motivating mathematical concepts such as limits and
infinite series. In this paper it will be shown how calculators may be used to
motivate a concept called infinite composition of functions which will contain, as
special cases, several mathematical topics, such as continued square roots, contin-
ued fractions, and infinite products. The concept of infinite composition of
functions is rich enough to spawn creative thinking as well as to provide rewarding
exercises.

infinite Composition

Select any positive number x and press the square root key (f; ) as often as you
wish. The displayed numbers seem to approach 1. Now this brings up an interest-
ing question. If you had an ideal machine, one that would compute with all the
digits and display all the digits, and if you pressed the key “continually,” would the
display “approach” 1? Although this hypothesis was formed by observing the
calculator, its proof lies in the proper mathematical formulation of the problem.
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We may formulate the problem as follows. The first time we press the key we
evaluate the function f(x) = x'/2, the second time yields f(f(x)) = x'/?%, the third
time yields f(f(f(x))) = X%, therefore the nth time we press the key we evaluate

. Pressing the key * contlnually can then be modeled as letting n get large,
wh1ch results in x'/%" approaching x° which equals 1 for x > 0.

Hence, we have used mathematlcs to prove a hypothesis suggested by the
calculator! But what is so special about f(x) = Yx ? Let us try to generalize the
technique.

Consider a real valued function f having the property that its range is a subset of
its domain. Let us define S,(x) = f(x), Sy(x) = f(f(x)), S3(x) = f(f(f(x))), and so
on; for each integer n we have S, (x). We define the infinite composition of f at x,
denoted S (x), as the limit of S,(x) as n gets large (approaches infinity), provided
the limit exists.

This formulation clearly covers the yx example. We will now consider other
examples along with calculator displays. For our calculations we have used an
algebraic language calculator (Texas Instruments, SR-52), and it should be noted
that different calculators may require different sequence steps.

Example 1. Let f(x) = x> Note each time we press the x? key we take the
composition of f. Hence, can we “guess” the infinite composition of f at, say,
x = 0.5, by observing the following calculator display sequence?

Step Key Sequence Display
1 x? S1(.5) =0.25
2 x? S,(.5) = 0.0625
x2 S5(.5) = 0.00390625
etc. S4(-5) = 0.0000152588
5 S5(.5) = 0.0000000002
o0 S,(.5) =17

Did you guess S, (.5) = 0? Is this correct? For what other values of x would you get
a similar pattern? Again, we must use the mathematics that we have developed
before we can hope to get a satlsfactory answer to these questions. In so doing, we
have S;(x)=x% S,(x)=x?,...,S,(x)=x%, and now it is clear S (x)=0
whenever x is between —1 and 1.

We should observe that, for the infinite composition problems that we have
considered so far, the key to their mathematical proof has been in obtaining a
“nice” expression for S,(x). For some rather interesting problems a neat expression
for S, (x) may not be easily obtained, and hence we are now motivated to extend
our theory to try to -alleviate this problem. Very few things in life are free, and in
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this case there is no exception. We elect to pay the price of assuming f is
continuous at S (x). This allows us to take the limit “inside” the composition; that
is,

S.o(x) = limit S, (x) = limit S, (x) = limit £(5,(x))
= f( Liglg S,,(x)) (Did you see the limit go “inside” the function?)

= f(Sx())-

Eureka! We have proved the following results.

Theorem. If f is continuous at S _(x) for all x such that S_(x) exists, then

J(S (X)) = S (%)

Corollary (Fixed point). In addition to the assumptions of the Theorem, if we have
S (x) =k, where k is a constant, then f(k) = k.

Example 2 (Continued Square Roots). Let f(x)=va+ x where a >0 and

x > —a. Let us try to “guess” the infinite composition of f using a = 12 and x = 1
by observing the following calculator display.

Step Key Sequence Display

1 ]T] 12
2 r+_| 12

Vx S,(1) = 3.605551275

S,(1) = 3.950386219

ninio
By

3 r+_| 12 W S5(1) = 3.993793462
4 etc. S,(1) = 3.999224108
5 S(1) = 3.999903012
6 S¢(1) = 3.999987877
7 S,(1) = 3.999998485
8 Sg(1) = 3.999999811
9 So(1) = 3.999999976
10 S10(1) = 3.999999997
11 Su() =4
- Display remains unchanged?
o0 S =?

It appears the “logical guess” is S, (1) = 4. Using the mathematical approach we
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have

Si(x)=va+ x,

Sz(x)=\/a +Va+ x

S3(x) =\/a +Va+ya+x
and hence

Sw(x)=\/a+\/a+\/a +va +

provided S (x) exists. So what! How do we “evaluate” something in such a
complicated form? Maybe we should appeal to our theorem; f is certainly continu-

ous! Applying the theorem we have f(S_(x)) = S (x) and hence ya + S_(x)
= §_(x), which yields S_(x)=(1+1+4a)/2 since S (x)>0. Alas! For
a=12, S_(x)=4 for all x > —12, and certainly for x =1 used in our calculator
demonstration. In fact f(4) =4, thus illustrating the fixed point corollary. This
example of continued square roots was previously considered by Rotando (1965)
and is presented here to show that it is simply another interesting example of an
infinite composition of a function and that it contains a special application of our
theorem.

Example 3 (Continued Fractions). Let f(x)=b/(a + x) with a >0, b >0, and
x > 1. Again, let us try to guess S (2) using the calculator with x =2 and
a = b = 1. With a little endurance, we obtain the following,.

Step Key Sequence Display

v

1

S,(2) =.3333333333

% =

5,2) =.75

X =

JEJH1
L] D] [ [

S3(2) =.5714285714

4 1 -)1; 5,2) = 6363636364

5 etc. S«2)=.6111111111
23 S,5(2) =.6180339885
24 S,,(2) =.6180339888
25 S,4(2) =.6180339887
26 S,4(2) =.6180339888
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27 S,,(2) = 6180339887

28 S,4(2) = 6180339888
29 S,4(2) = 6180339887
30 S,4(2) = 6180339888
31 S,,(2) = 6180339888
32 5,,(2) = 6180339888
o0 S.(2)=?

We now prove that, if you guessed S_(2) =.6180339888, you are correct to nine
decimal places, not ten!

We have
S‘(x)_a+x’ Sy(x) = b » S3(x) b ’
+ at ———
a+ x a+ b
a+ x
and hence
b
a+
b
a+ A
a+ ——
a+...

Assuming S (x) exists, we apply the theorem to obtain f(S(x)) = S (x), which
results in b/(a + S (x)) = S, (x). Using the fact that S_(x) > 0, we obtain

_ 2
S (x) = —a+|+4b )

2

In fact, for a=1 and b =1, we have S _(x)=(—1 +J§)/2 =.6180339887 . ..
= @G, which is the well-known constant referred to as the “Ratio of the Golden
Section.”

Example 4 (S, does not exist). Let f(x) = x? for x > 1. Now S,(x) = x*" and
lim,_,  S,(x) = « for each x > 1, and hence S _(x) does not exist. Select x =3
and continually press the x> key. Observe the result!

Example 5 (S, does not exist). Let f(x)=1/x for x & {—1,0,1}. We have
S;(x)=1/x, S,(x) = x, S;(x)=1/x, and hence S,(x) equals x if n is even and
1/x if n is odd. Note, as n—> o0, S, oscillates between x and 1/x, and hence
lim,_, . S,(x) does not exist. Select x =3 and continually press the 1/x key.
Observe the result!

It is interesting to observe the difference in the manner in which the calculator
reacts to Example 4 as compared with Example 5.
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A Geometric Interpretation

An intuitive feeling may be obtained (see Figure 1) for the infinite composition of a
function by considering the example f(x)=yx where x > 1. The composition is
“closing down” on the unit box and thus approaching 1. Also notice the role the
line y = x is playing concerning the fixed point corollary.

3
— S (x)+ 2
1(x) y= ‘/;
—S2(x)
S3(x)
l T 1
l
1
|
|
: 1 2 3 4
Y Sa(x)  Sy(x) x
etc. T
Start here
Figure 1.
Generalization

Instead of just one function, let us now consider a sequence of functions f,, f,,
f3> -+« . We now have S,(x) = fi(x), Sy(x) = f,(fi(x)), S5(x) = f5(fo f1(x))), and so
on; for each integer n» we have S,(x). We define the infinite composition of the
sequence of functions of x, denoted S_(x), as the limit of S,(x) as n approaches
o0, provided the limit exists!

Example 6 (Infinite Products). Let f,(x) = x4, for i=1,2,... . We have S,(x)
= xA,, S,(x)=xA,4,, and hence S,(x)= x[[;_,A;. Therefore, S_(x)=
xJI{Z,4;, and hence the concept of infinite products becomes a special case of
infinite composition of functions. An interesting exercise is to obtain a general
expression for the A;’s and the value of x in order to obtain the well-known
expansion

2-4-4-6-6-8-8-10-10-12-12- - -

T=43355.7.7.9.9.-11-11-13 -

and to “investigate” this product on the calculator.
It should be noted that if we had selected f,(x) = x + A4, then it follows in a
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similar manner that infinite series become a special case of infinite composition of
functions.

General Questions

The material available through infinite composition of functions is abundant. A
few (out of many) questions that may be asked are as follows:

1. What infinite compositions can be obtained using a sequence of trigonomet-
ric functions? What about selecting a sequence of inverse trigonometric functions?
Is the infinite composition of arctan(x) the constant function S _(x) = 0 for all real
numbers x? What about the infinite composition of functions, such as cos(x) and
sin(x)?

2. What is the relationship between a sequence of functions and the sequence
of inverse functions in terms of their convergence in infinite composition?

3. What properties must be satisfied in order for a sequence of functions to
converge in infinite composition to a continuous function? To a differentiable
function? To an integrable function?

4. It is well known that, in general, composition of functions is not commuta-
tive. Hence, what could be gained by considering the infinite composition of the
functions in a different order, such as

St(x) = limit fi(fo( < -~ f,(x) - )-

With this expansion, could a more general form of continued fractions be ob-
tained? Would this particular form be compatible with the calculator?

Conclusions

A concept called infinite composition has been introduced which unifies many
mathematical topics. The concept is revealed to be as elementary in nature as
simply pressing keys on a calculator but yet solid enough in mathematical content
to challenge the inquisitive mind of a student at any level. The calculator is
considered as an interesting tool with which students can make observations and
form intriguing hypotheses; however, it should be stressed that hypotheses found
on the calculator cannot be proved on the calculator. Only with the proper
mathematical formulation can the student hope to carry out his inquiry. Proofs
often lead to interesting and useful mathematics. Therefore, the calculator plays an
important first step in the process. In this vein, it is believed that the student will
gain a better appreciation not only of the capabilities of the calculator but also of
its limitations.
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