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Abstract

Many historians of mathematics consider the nineteenth century to be
the Golden Age of mathematics. During this time period many areas of
mathematics, such as algebra and geometry, were being placed on rigor-
ous foundations. Another area that experienced fundamental change was
analysis. Grabiner [1981] considers Joseph-Louis Lagrange (1736-1813) to
be the first mathematician to treat the eighteenth century foundations of
calculus as a serious mathematical issue. The publication of his Fonctions
analytiques [1797] can be seen as the first attempt to resolve these foun-
dational issues. However, many other mathematicians also contributed to
the foundational debates of the eighteenth and nineteenth centuries. One
such figure was François-Joseph Servois (1767-1847). Servois was a priest,
artillery officer during the French Revolutionary period, professor of math-
ematics, and supporter of Lagrange’s algebraic formalism. We give here
an English translation of Servois’ “Essay on a new method of exposition of
the principles of differential calculus” [1814a], in which Servois continued
the work of Lagrange by attempting to place calculus on a foundation of
algebraic analysis without recourse to infinitesimals. We provide an anal-
ysis of Servois’ paper and a guide to reading it in our article, “Servois’
1814 Essay on a New Method of Exposition of the Principles of Differen-
tial Calculus, with an English Translation,” available in the MAA online
journal Loci: Convergence at http://mathdl.maa.org/mathDL/46/ (DOI:
10.4169/loci003597).
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ESSAY 2

Essay on a new method of
exposition of the principles of

differential calculus1

By Mr. Servois, professor of the artillery schools2

“Insofar as (analysis) is extended and enriched by new methods,
it becomes more complicated, and we can only simplify it by simulta-
neously generalizing and reducing the methods that are susceptible
to these benefits.”

(Méchanique analitique, p. 338.)3

[93]4 1. I begin by establishing some notation and by giving several definitions.
fz, fz, Fz, ez, . . . denote functions of an arbitrary quantity of z; I call these

simple monomial functions.
ffz, ffFz, . . . denote functions of functions of z; these are the composite

monomial functions.
[94] fz, f2z, f3z, . . . , fnz represent the function denoted by f of the quantity

z taken successively 1 time, 2 times, 3 times, . . . , n times. These are the
monomial functions of the 1st, 2nd, 3rd, . . . , nth order; n is the exponent of the
order of the function.

f−1z, f−2z, . . . , f−nz denote functions of z whose complete definitions are
given by the general equation

fnf−nz = f−nfnz = z. (1)

These are the inverse functions or functions of negative order.
If the quantity under the functional symbol, that is to say the subject of the

function, is polynomial, then we put it between parentheses. Thus, f(a + z)
denotes the function f of the binomial a + z. Whenever the subject of the
function is regarded as a complex,5 we use commas between the partial subjects,

1Essai sur un nouveau mode d’exposition des principes du calcul différentiel, an article in
Annales des Mathématiques pures et appliquées 5 (1814-1815), pp. 93-140. In some citations,
the title begins with the words “Analise Transcendante,” because the headline of a title page
in Gergonne’s Annales is the editorial category to which the article was assigned.

2The following footnote appeared at this place in the original article: “What we are about
to read, in essence, is extracted from two memoirs on the development of functions into series
by the differential method, presented to the First Class of the Institute [i.e. the mathematics
section of the Institut National des Sciences et des Arts], the first, toward the end of 1805 and
the second in 1809. They received the approval of the class in a report by Messrs. Legendre
and Lacroix, dated October 5, 1812.”

3Servois inserted this epigram here. It comes from the introductory paragraphs of Section
6 (On the Rotation of Bodies) of [Lagrange 1788].

4Numbers in square brackets represent the original page numbers of the article in Ger-
gonne’s Annales.

5That is, a collection, and not to be confused with complex numbers.

Bradley, Robert E. and Salvatore J. Petrilli, Jr., “Servois’ 1814 Essay on a New Method of
Exposition of the Principles of the Differential Calculus, with an English Translation,” Loci:
Convergence (November 2010), DOI: 10.4169/loci003597



ESSAY 3

along with parentheses. Thus f [x, (b + y), z, . . .] denotes the function f of the
quantities x, b+ y, z, . . . .

If fz = z, that is, if the subject is taken only one time, the function f is the
constant factor 1. If fz = az, or if the subject is taken a times, the function f
is the constant factor of a.6

Suppose that the subject z is a complex, for example z = φ(x, y, . . .), where
x, y, . . . , are arbitrary or independent variable quantities that receive, respec-
tively, invariable or constant increments α, β, . . . . If we have

fz = ϕ(x+ α, y + β, . . .),

the function f is called the varied state of z. I propose, following Arbogast
(Calculus des derivations, no. 442),7 to denote this particular function by the
letter E, and I adopt the following definitions

Ez = ϕ(x+ α, y + β, . . .),

E−1z = ϕ(x− α, y − β, . . .) and

Enz = ϕ(x+ nα, y + nβ, . . .),

 (2)

[95] If fz = Ez − z, the function f is called the difference of z; it is a time-
honored tradition to denote this by the letter ∆. Thus, we have the following
definitions

∆z = Ez − z = ϕ(x+ α, y + β, . . .)− ϕ(x, y, . . .). (3)

We conclude immediately from this another expression for the varied state

Ez = z + ∆z. (4)

When the subject z is a complex, we frequently need to state that the func-
tion f is taken only with respect to a single partial subject. Thus, if we wish
to state that the function f is taken only with respect to x, we will write f

xz.
If the function is only to affect y, we will write f

y z and so on. f
xz,

f
y z, . . . are

the partial f functions of z. Thus, when a is a constant factor, we have the
following definition of the partial constant factor a

a

x
z = ϕ(ax, y, . . .).

Similarly, from (2) and (3), we have the following definition of the partial varied
states and the partial differences

En

x
z = ϕ(x+ nα, y, . . .),

En

y
z = ϕ(x, y + nβ, . . .),

∆
x
z = ϕ(x+ α, y, . . .)− ϕ(x, y, . . .) =

E

x
z − z and

∆
y
z = ϕ(x, y + β, . . .)− ϕ(x, y, . . .) =

E

y
z − z.


(5)

6Servois refers to these functions simply as “factors.” We translate this as “constant
factors,” to avoid confusion in the places where the word “factor” is used in the ordinary
sense.

7See [Arbogast 1800].

Bradley, Robert E. and Salvatore J. Petrilli, Jr., “Servois’ 1814 Essay on a New Method of
Exposition of the Principles of the Differential Calculus, with an English Translation,” Loci:
Convergence (November 2010), DOI: 10.4169/loci003597



ESSAY 4

f0z is always equal to z, for the expression itself indicates [96] that we do
not take the function f of z and, as a consequence, in this regard and z does
not undergo any modification. Thus

z = a0z = E0z = ∆0z =
E0

x
z =

E0

y
z = . . . . (6)

Every inverse function admits an arbitrary complement, whenever the direct
function of the first order has the property of eliminating certain terms in its
subject, or to make certain factors equal to one. Because, for example, the
difference ∆ eliminates constant terms, among other things, the inverse function
∆−1z in this case takes an additive complement, an arbitrary constant A.

It is customary to denote by Σz,Σ2z, . . . ,Σnz, the function of z that we will
call integrals, the definition of which is given by the equation

∆nΣnz = Σn∆nz = z;

and, since by equation (1), we also have

∆n∆−nz = ∆−n∆nz = z,

it follows that
Σnz = ∆−nz. (7)

For the same reason, when ln denotes the natural logarithm8 and e denotes
the base of that system, we have

ln ln−1 z = z = ln ez, ln2 ln−2 z = z = ln2 ee
z

, . . .

Therefore
ez = ln−1 z, ee

z

= ln−2 z, . . . . (8)

We also find9

sin−1 z = Arc(sin = z), tan−1 z = Arc(tan = z), . . . . (9)

because we have [97]

z = sin(sin−1 z) = sin Arc(sin = z)
= tan(tan−1 z) = tan Arc(tan = z).

To prevent any misunderstanding, the product of fx and fy will be denoted
by fx · fy. The expression fxfy will signify the function f of the product of x by
fy. The power n of fx will be denoted (fx)n. The expression fxn denotes the
function f of the power n of x.

8Servois used the symbol L for the natural logarithm. We will consistently use ln in its
place.

9Servois used “Sin.” for sine and “Tang.” for tangent. We will consistently use sin and
tan in place of those.
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ESSAY 5

2. Let
Fz = fz + fz + ϕz + . . . , (10)

that is, let us suppose that to form the function F of z, we must add, to the
function f of z a second function f of the same letter, then a third function
denoted by ϕ, and so on. The function F is therefore in the class of polynomial
function. We may indicate this sense of the function F by a very expressive
notation, which has the great advantage of permitting us to treat polynomial
functions as monomial functions, without losing sight of the way in which they
are composed. We write

Fz = (f + f + ϕ+ . . .)z.

As a consequence, we also have

Fnz = (f + f + ϕ+ . . .)nz. (11)

If F ′ is another polynomial function of z, given by the equation

F ′z = (f′ + f ′ + ϕ′ + . . .)z,

then we may also express the function F ′ of Fz by writing

F ′Fz = (f′ + f ′ + ϕ′ + . . .)(f + f + φ+ . . .)z, (12)

and so on.
[98] There is no reason why some or all of the composing monomial functions

may not be constant factors. In the latter case, we will have, without ambiguity
in (11) and (12), that Fz, F ′Fz, . . . , will be the products of z multiplied by the
polynomial f + f +ϕ+ . . . or by the product (f′+ f ′+ϕ′+ . . .)(f + f +ϕ+ . . .).

3. Let
ϕ(x+ y + . . .) = ϕx+ ϕy + . . . , (13)

functions which, like ϕ, are such that the function of the (algebraic) sum of any
number of quantities is equal to the sum of the same function of each of these
quantities, are called distributive.

Therefore, because

a(x+ y + . . .) = ax+ by + . . . , E(x+ y + . . .) = Ex+ Ey + . . . , . . .

the constant factor a, the varied state E, . . . , are distributive functions. How-
ever, because we do not have

sin(x+ y + . . .) = sinx+ sin y + . . . , ln(x+ y + . . .) = lnx+ ln y + . . . , . . .

the sine, the natural logarithm, . . . , are not distributive functions.
4. Let

ffz = f fz. (14)
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ESSAY 6

Functions which like f and f , are such that they give identical results, no matter
in which order we apply them to the subject, are called commutative between
themselves.

Therefore, because we have

abz = baz, aEz = Eaz; , . . . ,

the constant factors a and b, the constant factor a and the varied state E, are
functions that are commutative between themselves. However, because when a
is constant and x is variable we do not have

sin az = a sin z, Exz = xEz, ∆x z = x∆z . . . ,

[99] it follows that the sine and the constant factor, the varied state and the
variable constant factor, . . . , do not belong to the class of functions commutative
between themselves.

5. We collect together several important theorems from these simple notions.
If two functions φ and ψ are distributive, the monomial composed function

is also distributive. Because by hypothesis, we have

ψ(x+ y) = ψx+ ψy and ϕ(t+ u) = ϕt+ ϕu,

we clearly have10

ϕψ(x+ y) = ϕ(ψx+ ψy) = ϕ(t+ u) = ϕt+ ϕu = ϕψx+ ϕψy.

From this, it follows immediately that the different orders of a distributive
function are also distributive functions.

6. If the monomial functions f, f , ϕ, . . . making up the polynomial function
F are distributive, then the polynomial function F also has the same property
because, according to definition (10), we have

F (x+ y) = f(x+ y) + f(x+ y) + ϕ(x+ y) + . . . .

However, since f, f , ϕ, . . . are distributive, this equations becomes

F (x+ y) = fx+ fx+ ϕx+ . . .+ fy + fy + ϕy + . . . = Fx+ Fy.

We may say the same thing (§5) of the different orders Fn of the same function.
7. Suppose the functions f, f, ϕ, . . . are commutative between themselves two

by two, so that we have

ffz = f fz, fϕz = ϕfz, fϕz = ϕfz, . . . .

Taking a certain number n of these functions, if we form all possible composite
monomial functions given by the permutation of these n functional symbols, all
of the composite monomial functions that result are equivalent.

10The right hand side of the final equality was written as ϕψt+ ϕψu in the original text.
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ESSAY 7

Therefore, for example, if we take the first three f, f, ϕ, we have

ffϕz = f fϕz = fϕfz = ϕffz = fϕfz = ϕf fz.

[100] To prove this in general, consider the monomial function

f . . . fϕψF . . . z

we may, without changing the value, permute any two consecutive function
symbols between themselves, say ϕ and ψ, for example. For, if

F . . . z = t,

then we have
ϕψF . . . z = ϕψt.

Now, by hypothesis,
ϕψt = ψϕt,

so
ϕψF . . . z = ψϕF . . . z,

and taking the composite function of both sides,

f . . . fϕψF . . . z = f . . . fψϕF . . . z.

It follows that each functional symbol may be brought to whatever position
we wish in the first combination, and therefore we may apply the functional
symbols in all possible permutations, without altering the value of the composed
function.

Clearly, we conclude from this theorem that from the functional symbols
f, f , ϕ, . . . , that are commutative between themselves two by two, we may
form, at will, new functions composed of two, three, . . . , symbols, such as,
ffz, ϕψFz, . . ., all of which are also commutative between themselves and with
the first ones.

8. If f and f are commutative between themselves, they are also so with
their inverses, which are also commutative between themselves. That is, if we
have

ffz = f fz, (15)

we also have

ff−1z = f−1fz, f f−1z = f−1fz, f−1f−1z = f−1f−1z. (16)

Indeed, by (1) we have [101]

f ff−1z = ff−1fz.

Now by (15)
f ff−1z = ff f−1z,

Bradley, Robert E. and Salvatore J. Petrilli, Jr., “Servois’ 1814 Essay on a New Method of
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ESSAY 8

and so11

ff f−1z = ff−1fz,

and taking the function f−1 of both sides,

f f−1z = f−1fz.

This is the first of the theorems (16) and the second is proven in the same way.
As for the third, we have, by (1),

f−1f f−1z = f−1f−1fz

and, by the first of the theorems (16), we have

f−1f−1fz = f−1f−1fz,

which becomes the third theorem (16), by changing fz to z.
9. From the theorems (§7, 8) we conclude, without further discussion, the

following formulas.
When f, f , ϕ, . . ., are commutative between themselves and k, m, n, . . ., are

positive integers, we have
fnfmz = fmfnz. (17)

Also, denoting ffz by ϕz;

ϕnz = fnfnz = fnfnz. (18)

Finally, denoting fnfmz by ψz;

ψkz = fknfkmz = fkmfknz. (19)

10. If the monomial functions making up a polynomial function are, at the
same time, distributive and commutative between themselves, all orders of the
polynomial functions are distributive functions (we already know this from §6)
and commutative, not only with the different orders of the constituent functions,
but also with all orders of the distributive functions which are commutative with
these latter functions.

Let [102]
Fz = fz + fz + . . .

and suppose that the distributive functions f, f, . . . are commutative both be-
tween themselves and with an arbitrary distributive function ϕ . We have (§6)

fFz = f2z + ffz + . . . = f2z + f fz + . . . = F fz.

We also find that
fFz = Ffz, . . . , ϕFz = Fϕz.

11The right hand side was ff−1fz in the original text.
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ESSAY 9

Adding to this the consideration given by formula (17), this proposition is com-
pletely demonstrated.

11. If the monomial functions of two polynomials are distributive and com-
mutative between themselves, the two polynomial functions will be distributive
(by §6) and commutative between themselves.

Indeed, let

Fz = fz + fz + . . . , F ′z = f′z + f ′z + . . . .

We clearly have

FF ′z = ff′z + ff ′z + . . .+ f f′z + ff ′z + . . .

F ′Fz = f′fz + f′fz + . . .+ f ′fz + f ′fz + . . . .

}
(20)

Now, according to the hypothesis, these two expansions are composed of terms
that are identical two by two, and so we have

FF ′z = F ′Fz.

If we further let
F ′′z = f′′z + f ′′z + . . . ,

then supposing f′′, f ′′, . . . to be distributive and commutative between them-
selves and with f, f , . . . , f′, f ′, . . . , then F ′′ will be commutative with F , F ′.
As a consequence, by (§7), we have

FF ′F ′′z = FF ′′F ′z = F ′FF ′′z = F ′F ′′Fz = F ′′FF ′z = F ′′F ′Fz,

and so on.
12. The expansion of composed monomial functions, such [103] as FF ′z,

FF ′F ′′z, . . . (§11), whose simple functions are themselves polynomial functions,
such that the constituent monomial functions are distributive and commutative
among themselves, presents no difficulty. In equation (20), we have this for
functions of the type FF ′z. By the same procedure, we pass from those of this
type to those of the type FF ′F ′′z, and so on. We therefore know how to expand
all functions of the form

FF ′ . . . z = (f + f + . . .)(f′ + f ′ + . . .) . . . z. (21)

The general expansion of an arbitrary order Fnz of a polynomial function
Fz, composed of monomial functions that are distributive and commutative
highlights the general theory of the expansion of functions into series, whose
principles we will now explain.

13. Suppose we have, respectively

x = α, x = β, x = γ, x = δ, . . . ,

whenever ϕx = 0, ϕ′x = 0, ϕ′′x = 0, ϕ′′′x = 0, . . . .

}
(22)

Bradley, Robert E. and Salvatore J. Petrilli, Jr., “Servois’ 1814 Essay on a New Method of
Exposition of the Principles of the Differential Calculus, with an English Translation,” Loci:
Convergence (November 2010), DOI: 10.4169/loci003597



ESSAY 10

I write the indefinite sequence of equations

Fx = Fα+ ϕxF ′x,

F ′x = F ′β + ϕ′xF ′′x,

F ′′x = F ′′γ + ϕ′′xF ′′′x,

. . . . . . . . . . . . . . . . . . . . . . . . . .

 (23)

equations, which I render identical, in supposing that

F ′x =
Fx− Fα

ϕx
, F ′′x =

F ′x− F ′β
ϕ′x

, F ′′′x =
F ′′x− F ′′γ

ϕ′′x
, . . . . (24)

I take the sum of the respective products of the equation (23) by 1, ϕx, ϕx ·
ϕ′x, ϕx · ϕ′x · ϕ′′x, . . ., and obtain, after reducing

Fx = Fα+ ϕx · F ′β + ϕx · ϕ′x · F ′′γ + ϕx · ϕ′x · ϕ′′x · F ′′′δ + . . . . (25)

Equations (24) immediately give [104]

F ′β =
Fβ − Fα

ϕβ
, F ′γ =

Fγ − Fα
ϕγ

, F ′δ =
Fδ − Fα

ϕδ
, . . . ,

F ′′γ =
F ′γ − F ′β

ϕ′γ
, F ′′δ =

F ′δ − F ′β
ϕ′δ

, F ′′ε =
F ′ε− F ′β

ϕ′ε
, . . . ,

F ′′′δ =
F ′′δ − F ′′γ

ϕ′′δ
, F ′′′ε =

F ′′ε− F ′′γ
ϕ′′ε

, F ′′′ζ =
F ′′ζ − F ′′γ

ϕ′′ζ
, . . . ,

. . . . . . . . . . . . . . . . . . , . . . . . . . . . . . . . . . . . . , . . . . . . . . . . . . . . . . . . , . . . .


(26)

Now from these (26) we easily determine the coefficients F ′β, F ′′γ, F ′′′δ, . . . of
equation (25), expressed only in terms of the functions F , ϕ, ϕ′, ϕ′′, . . . and the
constants α, β, γ, . . . . Indeed, we have

F ′β =
(Fβ − Fα)

ϕβ
,

F ′′γ =
(Fγ − Fα)
ϕγ.ϕ′γ

− (Fβ − Fα)
ϕβ.ϕ′γ

,

F ′′′δ =
(Fδ − Fα)
ϕδ.ϕ′δ.ϕ′′δ

− (Fγ − Fα)
ϕγ.ϕ′γ.ϕ′′δ

+
(Fβ − Fα)(ϕ′δ − ϕ′γ)

ϕβ.ϕ′γ.ϕ′δ.ϕ′′δ
,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .


(27)

Here we have series (25), in a very general form, established analytically,
by a very natural procedure that has the appearance of the greatest simplicity,
so that it seems that nothing remains but to apply it to various particular
cases. But we must remark that this procedure also presents serious difficulties.
The first is the great difficulty of deducing, even in the simplest cases, the
relationship among the coefficients F ′β, F ′′γ, . . . . The second, and this is the
major difficulty, is that it yields nothing in what is perhaps the most useful case,
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ESSAY 11

that of equality among some or all of the constants α, β, , . . . , for then some
or all of the constant factors take the indeterminate form 0

0 . In particular, this
is what occurs when all the functions ϕx, ϕ′x, . . . , are equal and consequently
when we wish to expand Fx in terms of the powers of another function ϕx. It
also occurs when the functions ϕx, ϕ′x, . . . , are different from [105] one another,
but are all of the form xnψx. However, upon further examination, we recognize
that these difficulties are not insurmountable, and that they disappear when
we modify the procedure slightly and, in particular, when we don’t attack the
general problem. Here is what I have found to be simplest in this regard.

14. In F (x+ y) I consider only y as variable, having α as an arbitrary and
constant increment. I write the identity

F (x+ y) = Fx+ y

{
F (x+ y)− Fx

y

}
,

which, in letting
F (x+ y)− Fx

y
= fy (28)

becomes
F (x+ y) = Fx+ y fy. (29)

I take the successive differences of equation (29), with respect to y only, and
from this, I observe that in general (3)

∆(ϕy · ψy) = ϕ(y + α) · ψ(y + α)− ϕy · ψy,

or rather
∆(ϕy · ψy) = ϕy ·∆ψy + ∆ϕy · ψ(y + α). (30)

Consequently, I have successively

∆F (x+ y) = αfy + (y + α)∆fy,

∆2F (x+ y) = 2α∆fy + (y + 2α)∆2fy,

∆3F (x+ y) = 3α∆2fy + (y + 3α)∆3fy,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

From this I deduce, by transposition [106]

fy =
∆F (x+ y)

α
− (y + α)

α
∆fy,

2∆fy =
∆2F (x+ y)

α
− (y + 2α)

α
∆2fy,

3∆2fy =
∆3F (x+ y)

α
− (y + 3α)

α
∆3fy,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .


(31)

Finally, if we take the sum of the products of these equations (31) by

y, −y(y + α)
1 · 2 · α

, +
y(y + α)(y + 2α)

1 · 2 · 3 · α2
, . . . ,
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respectively, then by reducing and making use of equation (29), we have

F (x+ y) = Fx+
y

α
∆F (x+ y)− y(y + α)

1 · 2 · α2
∆2F (x+ y) + . . . .

Transposing this, we have

Fx = F (x+ y)− y

α
∆F (x+ y) +

y(y + α)
1 · 2 · α2

∆2F (x+ y)

−y(y + α)(y + 2α)
1 · 2 · 3 · α3

∆3F (x+ y) + . . . . (32)

We may also express this expansion in several other very remarkable forms.
First of all, I let x+ y = p, which gives

∆(x+ y) = ∆y = ∆p = α,

because x is constant. Consequently, the expression ∆nF (x+y) clearly becomes
∆nFp, the differences being taken with respect to p, which varies by α. Thus,
we have

Fx = Fp+
(x− p)
α

∆Fp+
(x− p)(x− p− α)

1 · 2 · α2
∆2Fp

+
(x− p)(x− p− α)(x− p− 2α)

1 · 2 · 3 · α3
∆3Fp+ . . . . (33)

[107] In this new expansion, I change x to x + nα. Thus by (2), the left hand
side becomes

F (x+ nα) = EnFx.

In the right hand side, x − p becomes x − p + nα. After this, I change p to x,
and so ∆p becomes ∆x and ∆nFp becomes ∆nFx. Since the differences are
taken with respect to x, which varies by α, we have

EnFx = F (x+ nα) (34)

= Fx+ n∆Fx+
n

1
· n− 1

2
∆2Fx+

n

1
· n− 1

2
· n− 2

3
∆3Fx+ . . . .

Now I let nα = m, from which n = m
α , and I have

F (x+m) = Fx+
m

α
∆Fx+

m(m− α)
1 · 2 · α2

∆2Fx

+
m(m− α)(m− 2α)

1 · 2 · 3 · α3
∆3Fx+ . . . . (35)

In equation (35), I let x = 0, which I will express with respect to the functions
Fx, . . . ,∆nFx by writing Fx0, ...,∆nFx0. Then I change m to x and I have12

Fx = Fx0 +
x

α
∆Fx0 +

x(x− α)
1 · 2 · α2

∆2Fx0 +
x(x− α)(x− 2α)

1 · 2 · 3 · α3
∆3Fx0 + . . . . (36)

12This is the Newton Forward Difference Series, more or less.
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ESSAY 13

15. Series (33) is also given by the procedure of §13, where we let

ϕx = x− p, ϕ′x = x− p− α, ϕ′′x = x− p− 2α, . . . ,

but it is much more difficult to derive the general and quite simple form of ∆mFp
that includes all the constant factors. We conclude immediately from this series
the possibility of expanding Fx according to the positive integer powers of x−pα ,
whereas the procedure of §13 yields nothing in this regard. Indeed, when the
products [108]

x− p
α

,
(x− p)(x− p− α)

α2
,

(x− p)(x− p− α)(x− p− 2α)
α3

, . . . ,

are expanded, all have the form

A

(
x− p
α

)
+B

(
x− p
α

)2

+ C

(
x− p
α

)3

+ . . . ,

so that after this expansion, it will be simply a matter of rearranging the terms

with respect to the powers
(
x− p
α

)
,
(
x− p
α

)2

, . . . . Then, without calculating,

we already recognize that the coefficient of the first power
x− p
α

will be the series

∆Fp− 1
2

∆2Fp+
1
3

∆3Fp− . . . . (37)

Furthermore, it would not be difficult to determine all of the coefficients by
means of this consideration alone. However, it will be quicker to investigate this
by a procedure analogous to that which was just used (§14).

First of all, I take the sum of the products of equation (31) by +1, − 1
2 , + 1

3 ,
− 1

4 + . . ., respectively. Multiplying through by α, this gives

αfy = ∆F (x+ y)− 1
2

∆2F (x+ y) +
1
3

∆3F (x+ y)− . . .

−y
{

∆fy − 1
2

∆2fy +
1
3

∆3fy − . . .
}
. (38)

Here, I let

∆F (x+ y)− 1
2

∆2F (x+ y) +
1
3

∆3F (x+ y)− . . . = dF(x+ y),

according to which notation we have

∆fy − 1
2

∆2fy +
1
3

∆3fy − . . . = dfy,

and in general,

∆z − 1
2

∆2z +
1
3

∆3z − . . . = dz. (39)
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This completely defines a new function of z, [109] polynomial or even infiniti-
nomial,13 in general, which I call the differential of z.

It follows immediately that

∆dz − 1
2

∆2dz +
1
3

∆3dz − . . . = d2z,

and, in general,

∆dnz − 1
2

∆2dnz +
1
3

∆3dnz − . . . = dn+1z. (40)

d2z, d3z, . . . , dnz, are called the differentials of z of different orders.
Given this, equation (38) becomes

αfy = dF (x+ y)− ydfy. (41)

Taking the successive differences of this, I have, by formula (30)

α∆fy = ∆dF (x+ y)− αdfy − (y + α)∆dfy,

α∆2fy = ∆2dF (x+ y)− 2α∆dfy − (y + 2α)∆2dfy,

α∆3fy = ∆3dF (x+ y)− 3α∆2dfy − (y + 3α)∆3dfy,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

I take the sum of the products of these equations by +1, − 1
2 , + 1

3 , − 1
4 , . . . ,

respectively, and, in reducing, I have

α
(
∆fy − 1

2∆2fy + 1
3∆3fy − . . .

)
= ∆dF (x+ y)− 1

2∆2dF (x+ y) + 1
3∆3dF (x+ y)− . . .

−αdfy − y
(
∆dfy − 1

2∆2dfy + 1
3∆3dfy − . . .

)
,

an equation which, using the notation of (39) and (40), becomes

αdfy = d2F (x+ y)− αdfy − yd2fy,

or rather
2αdfy = d2F (x+ y)− yd2fy. (42)

I perform the same operations on this equation as on equation (41); that is, I take
the sum of the products of the successive differences with +1,− 1

2 ,+
1
3 ,−

1
4 , . . .,

respectively. In reducing, this gives me [110]

3αdfy = d3F (x+ y)− yd3fy, (43)

using the notation of equations (39) and (40).

13Servois uses the term infinitinôme here. Both “infinitinome” and “infinitinomial” were
occasionally used in English by Newton and others in the 18th century.
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The procedures given for deriving equation (42) from (41) clearly can be
used to derive equation (43) from (42), and then to a new equation, and so on.
Thus, by a rigorous induction, we obtain the following indefinite sequence of
equations

αfy = dF (x+ y)− ydfy,

2αdfy = d2F (x+ y)− yd2fy,

3αd2fy = d3F (x+ y)− yd3fy,

4αd3fy = d4F (x+ y)− yd4fy,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Taking the sum of the products of these by

y

α
, − y2

1 · 2 · α2
, +

y3

1 · 2 · 3 · α3
, − y4

1 · 2 · 3 · 4 · α4
, . . . ,

respectively, we come, by means of the defining equation (29), to

F (x+y) = Fx+
y

α
dF (x+y)− y2

1 · 2 · α2
d2F (x+y)+

y3

1 · 2 · 3 · α3
d3F (x+y)−. . . ,

or, by transposition

Fx = F (x+ y)− y

α
dF (x+ y) +

y2

1 · 2 · α2
d2F (x+ y)

− y3

1 · 2 · 3 · α3
d3F (x+ y) + . . . , (44)

This series is very much analogous to series (32) and, like this latter, by the
same procedures, may take various different forms, namely:14

Fx = Fp+
(x− p)
α

dFp+
(x− p)2

1 · 2 · α2
d2Fp+

(x− 3)3

1 · 2 · 3 · α3
d3Fp+ . . . ,(45)

EnFx = F (x+ nα) = Fx+
n

1
dFx+

n2

1 · 2
d2Fx+

n3

1 · 2 · 3
d3Fx+ . . . ,(46)

F (x+m) = Fx+
m

α
dFx+

m2

1 · 2 · α2
d2Fx+

m3

1 · 2 · 3 · α3
d3Fx+ . . . , (47)

and

Fx = Fx0 +
x

α
dFx0 +

x2

1 · 2 · α2
d2Fx0 +

x3

1 · 2 · 3 · α3
d3Fx0 + . . . . (48)

16. I’m eager to apply these formulas to the expansion of the various orders
of the same function.

Let
Fx = ϕxz,

and let the constant increment in x be α. Then we have, by (3),

∆Fx = ϕx+αz − ϕxz.
14The last of these is Taylor’s Theorem, when we understand α to be dx.
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If the function ϕ is distributive, this expression will become

∆Fx = ϕx (ϕαz − z) . (49)

Admitting this hypothesis for the time being, let

ϕαz − z = fz. (50)

By the theorems of §5 and §6, ϕα and f will be distributive functions and,
because of (49), we have

∆Fx = ϕxfz.

Taking the difference of this, we have

∆2Fx = ϕx+αfz − ϕxfz = ϕx (ϕαfz − fz) . (51)

If the function ϕ is commutative with constant factors, it will also be commuta-
tive with the binomial function f in (50), by virtue of the theorem of §10. That
is, we have

ϕαfz = fϕαz.

Admitting this hypothesis in addition, then because f is distributive, we will
have, from (50),

ϕαfz − fz = fϕαz − fz = f (ϕαz − z) = f2z,

and so equation (51) becomes [112]

∆2Fx = ϕxf2z.

We also find that

∆3Fx = ϕxf3z, ∆4Fx = ϕxf4z, . . . .

By an obvious induction, we have

∆mFx = ϕxfmz,

an expression which, using the notation of §2, becomes

∆mFx = ϕx (ϕα − 1)m z. (52)

Now, by (6) we have

Fx0 = ϕ0z = z and ∆mFx0 = (ϕα − 1)m z.

Hence, by formula (36), we have

ϕxz = z +
x

α
(ϕα − 1) z +

x(x− α)
1 · 2 · α2

(ϕα − 1)2
z

+
x(x− α)(x− 2α)

1 · 2 · 3 · α3
(ϕα − 1)3

z + . . . . (53)

Bradley, Robert E. and Salvatore J. Petrilli, Jr., “Servois’ 1814 Essay on a New Method of
Exposition of the Principles of the Differential Calculus, with an English Translation,” Loci:
Convergence (November 2010), DOI: 10.4169/loci003597



ESSAY 17

Finally, combining definition (39) and formula (52), we find that

dFx = ∆Fx− 1
2

∆2Fx+ . . .

= ϕx
[
(ϕα − 1) z − 1

2
(ϕα − 1)2

z +
1
3

(ϕα − 1)3
z − . . .

]
. (54)

I usually denote the polynomial function contained above within the square
brackets by lnϕαz. The notation ln therefore denotes a definite function of ϕαz,
whose complete definition is given by the equation15

lnϕαz = (ϕα − 1) z − 1
2

(ϕα − 1)2
z +

1
3

(ϕα − 1)3
z − . . . . (55)

The function ln is called the Logarithm and lnϕαz is a monomial composed
function called the Logarithm of ϕα of z. Clearly (by §10) the function lnϕα is
not only distributive, but commutative with the function ϕ and with constant
factors. The same is not true for the simple function ln.

Therefore, equation (54) becomes [113]

dFx = ϕx lnϕαz.

From this, we conclude immediately that

d2Fx = ϕx (lnϕα)2
z, d3Fx = ϕx (lnϕα)3

z, . . . , dmFx = ϕx (lnϕα)m z. (56)

Consequently, letting x = 0 in Fx,dFx, . . . , dmFx, we have, by formula (48),
this other expansion for ϕxz,

ϕxz = z +
x

α
lnϕαz +

x2

1 · 2 · α2
(lnϕα)2

z +
x3

1 · 2 · 3 · α2
(lnϕα)3

z + . . . . (57)

Let us draw several important consequences. Because the increment α in
(57) is arbitrary, I make it equal to 1 and I have16

ϕxz = z +
x

1
lnϕz +

x2

1 · 2
(lnϕ)2

z +
x2

1 · 2 · 3
(lnϕ)3

z + . . . (58)

Comparing this expression term by term with that of equation (57), then be-
cause x is completely arbitrary we obtain the relation

α lnϕz = lnϕαz. (59)

Let f be a distributive function, commutative with ϕ and with constant
factors. Applying the function fx to both sides of equation (58) we have, by
formula (18) of §9,

fxϕxz = (fϕ)x z = fxz +
x

1
fx lnϕz +

x2

1 · 2
fx (lnϕ)2

z + . . . .

15We use the modern ln to denote the natural logarithm where Servois used L.
16In [Servois 1814a], the “+” between the terms of order 2 and order 3 was missing in the

equation below.
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Expanding each term of the right hand side of this using formula (58), we clearly
have17

(fϕ)xz = z + x ln fz +
x2

1 · 2
(ln f)2z + . . . . . . . . .

+ x lnϕz + 2
x2

1 · 2
(ln f)(lnϕ)z + . . .

+
x2

1 · 2
(lnϕ)2z + . . . . . . . . .

+ . . . . . . . . .


(60)

[114] from which, using (58) again, we have this other expression

(fϕ)x z = z + x (ln fϕ) z +
x2

1 · 2
(ln fϕ)2

z + . . . .

Therefore, comparing this term by term to (60), we have the relation18

ln fϕz = ln fz + lnϕz, (61)

because of the indeterminacy of x.
Suppose that

lnϕz = ψz

and take the inverse function ln−1 on both sides. Then we have

ϕz = ln−1 ψz and ϕxz =
(
ln−1 ψ

)x
z.

As a consequence, using formula (58),

(
ln−1 ψ

)x
z = z +

x

1
ψz +

x2

1 · 2
ψ2z +

x3

1 · 2 · 3
ψ3z + . . . . (62)

Once again, let f and ϕ be two distributive functions that are commutative
both with each other and with constant factors. Since u and x are arbitrary
exponents, we immediately have by (1),

fuϕxz = ln−1 ln fuϕxz, (63)

but, by (61) and (59), we also have

ln fuϕxz = ln fuz + lnϕxz = u ln fz + x lnϕz.

Therefore, by (63), using the notation of §2,

fuϕxz = ln−1 (u ln f + x lnϕ) z, (64)

17In [Servois 1814a], the variable z was missing from the last term of the first line below.
18In [Servois 1814a], the last term of this equation was given as Lϕx, but the variable z was

almost certainly what was intended.

Bradley, Robert E. and Salvatore J. Petrilli, Jr., “Servois’ 1814 Essay on a New Method of
Exposition of the Principles of the Differential Calculus, with an English Translation,” Loci:
Convergence (November 2010), DOI: 10.4169/loci003597



ESSAY 19

and, because of (62),

fuϕxz = z + (u ln f + x lnϕ) z +
1

1 · 2
(u ln f + x lnϕ)2

z

+
1

1 · 2 · 3
(u ln f + x lnϕ)3

z + . . . . (65)

Let us make some particular assumptions about the form of the function ϕ.
First of all, let [115]

ϕz = z + fz + (1 + f)z.

Taking α = 1, we immediately have from (53), (58), and (55)

(1 + f)xz = z +
x

1
fz +

x

1
x− 1

2
f2z +

x

1
x− 1

2
x− 2

3
f3z + . . .

(1 + f)xz = z +
x

1
ln(1 + f)z +

x2

1 · 2
[ln(1 + f)]2 z + . . .

ln(1 + f)z = fz − 1
2
f2z +

1
3
f3z − 1

4
f4z + . . . .


(66)

Let
ϕz = fz + fz.

Taking the inverse function f−1 of both sides, I have

f−1ϕz = z + f−1fz,

which, by letting
f−1ϕz = ψz and f−1fz = Fz,

becomes
ψz = z + Fz.

Using formula (66), I obtain

ψxz = z +
x

1
Fz +

x

1
· x− 1

2
F 2z +

x

1
· x− 1

2
· x− 2

3
F 3z + . . .

ψxz = z +
x

1
ln(1 + F )z +

x

1 · 2
[ln(1 + F )]2 + . . .

ln(1 + F )z = Fz − 1
2
F 2z +

1
3
F 3z − 1

4
F 4z + . . . .

In these formulas, I substitute the defining expression for ψz and Fz and I also
apply the function f to both sides of the first two formulas. Then I have [116]

ϕx = (f + f)xz = fxz +
x

1
fx−1fz +

x

1
x− 1

2
fx−2f2z + . . .

ϕx = (f + f)xz = fxz +
x

1
ln
(
1 + ff−1

)
fxz

+
x2

1 · 2
[
ln
(
1 + ff−1

)]2
fxz + . . .

ln
(
1 + ff−1

)
z = ff−1z − 1

2
f2f−2z +

1
3

f3f−3z − . . .


(67)
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Let
ϕz = fz + fz + ψz.

We let fz + ψz = Fz and by (67) we have the expansions related to

ϕxz = (f + F )xz.

In these, we substitute for the different orders F 2z, F 3z, . . ., their expansions as
given by the same equation (67), using

F xz = (f + ψ)x z.

We see, without needing to dwell on it, how to arrive at two expansions of order
x of an arbitrary polynomial function of distributive and commutative functions.
That is to say, we know how to expand the function

ϕxz = (f + f + F + ψ + . . .)x z. (68)

17. I will apply these generalities to functions given by the consideration of
differences of variable quantities, functions which I call differential functions.

Suppose z is a function of two variables x and y only (what we say may
be generalized without trouble to functions of more variables). Its differential
functions, both total and partial are, by (§2)

Ez,
E

x
z,

E

y
z; ∆z,

∆
x
z,

∆
y
z; dz,

d
x
z,

d
y
z.

Here, we use the general notation of (§1) for partial functions [117] to express
the partial differentials d

xz,
d
y z, . . . .

The definitions of the total differential functions (3), (4), and (39), expressed
in terms of the notation of §2 for polynomial functions, are

Enz = (1 + ∆)n z, ∆nz = (E − 1)n z;

dnz = (∆− 1
2∆2 + 1

3∆3 − . . .)nz =
[
(E − 1)− 1

2 (E − 1)2 + . . .
]n
z.

}
(69)

These may be used to express the partial differential functions, simply by chang-
ing E, ∆, and d to E

x , ∆
x , and d

x or to E
y , ∆

y , and d
y , respectively.

Let us also add the formula which establishes the connection between total
and partial functions, that is

Ez =
E

x

E

y
z. (70)

This is evidently true, since to have ϕ(x + α, y + β) = Ez, it is sufficient to
change, first of all, y to y+β – that is, to take E

y first – and then, in the result,
to change x to x+ α – that is, to take the varied state E

x , with respect to x, of
E
y z.

Given this, it is easy to see, first of all, that all differential functions are
distributive. Indeed, the varied states, E, E

x and E
y are clearly distributive,
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as are the constant factors. Now, using definition (69), the total or partial
difference and differentials are polynomial functions whose composing functions
are the orders of the varied states and of the constant factors. Thus, by virtue
of the theorem of §6, they are themselves distributive.

[118] Secondly, all the varied states are commutative with constant factors.
Indeed, it is quite remarkable that any varied state is commutative with any
function of constant order. That is, we have

Eϕz = ϕEz,
E

x
ϕz = ϕ

E

x
z and

E

y
ϕz = ϕ

E

y
z.

Indeed, it makes no difference at all whether we change x to x + α first, for
example, in the function z and then take the function ϕ of z, or rather we take
the function ϕ first, and then change x to x + α in it. It follows from this
that the varied states are commutative, both with each other and with all the
differences and differentials.

In the third place, differences and differentials, being commutative with the
varied states, and being polynomial functions composed of varied states, which
are commutative with constant factors, are themselves commutative with con-
stant factors, by virtue of the theorem of §10.

In the fourth place, because of its definition, the partial difference ∆
x z is

commutative with ∆
y z and d

y z, by §10, because these latter two are commutative
with E

x z and with constant factors.
In the fifth place, because of its definition, the partial differential d

xz is com-
mutative with d

y z, by §10, because this latter is commutative with the various
orders of ∆

x z and with constant factors.
Taking all these observations together it follows that all differential functions

and their various orders, both positive and negative, are commutative functions,
both among themselves and with constant factors. We may add to these the
integral functions

Σ,
Σ
x
,

Σ
y
,

∫
,

∫
x
,

∫
y
,

[119] as well as their various orders, as these functions are nothing but the
negative orders of differences and differentials.

Therefore, all the formulas given in the previous article are immediately
applicable to all of these functions. We immediately obtain several abbreviated
expressions, of which the following are the most remarkable.

In formula (46), I substitute z in place of Fx. Comparing this to equation
(62), I have

Enz =
(
ln−1 d

)n
z, (71)

and consequently

En

x
z =

(
ln−1 d

x

)n
z and

En

y
z =

(
ln−1 d

y

)n
z. (72)
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From the previous expressions and the definition ∆nz = (E − 1)nz (69), we
immediately have

∆nz =
(
ln−1 d− 1

)n
z,

∆n

x
z =

(
ln−1 d

x
− 1
)n

z,

∆n

y
z =

(
ln−1 d

y
− 1
)n

z. (73)

Comparing definitions (69) of the differential with formula (55), we have

dnz = [ln (1 + ∆)]n x = (lnE)n z,
dn

x
z =

[
ln
(

1 +
∆
x

)]n
z =

(
ln
E

x

)n
z,

dn

y
z =

[
ln
(

1 +
∆
y

)]n
z =

(
ln
E

y

)n
z. (74)

If, in the formula ∆nz = (E − 1)nz, we substitute Ez for the equivalent
expression E

x
E
y z which is itself equivalent to

(
1 + ∆

x

) (
1 + ∆

y

)
z by (69), we

have [120]

∆nz =
[(

1 +
∆
x

)(
1 +

∆
y

)
− 1
]n
z

=
[
E

y

(
1 +

∆
x

)
− 1
]n
z =

[
E

x

(
1 +

∆
y

)
− 1
]n
z. (75)

If we substitute the expression (70) in place of Ez in dnz = (lnE)nz (74),
we have

dnz =
(

ln
E

x

E

y

)n
z. (76)

Now, using formula (61) and the expressions of (72), we have

ln
E

x

E

y
z = ln

E

x
z + ln

E

y
z =

d
x
z +

d
y
z =

(
d
x

+
d
y

)
z.

Therefore, in place of (76), we have

dnz =
(

d
x

+
d
y

)n
z. (77)

If, in equation (64), we change u, f , x, and ϕ to m, Ex , n, and E
y , respectively,

we have

Em

x

En

y
z = ϕ (x+mα, y + nβ) = ln−1

(
m ln

E

x
+ n ln

E

y

)
z.
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By equation (62),19 this becomes

Em

x

En

y
z = ϕ (x+mα, y + nβ) = ln−1

(
m

d
x

+ n
d
y

)
z. (78)

From §11 and §18, we know how to expand all such abbreviated expressions.
This is the appropriate place to make the observation that by combining

differential functions among themselves and with constant factors, we may form
an infinitude of new differential functions, all of which, by our general theorems
(§5 through §10), will be distributive [121] and commutative, both among them-
selves and with constant factors. Therefore, if we assign particular expressions
to polynomial functions, such as, for example,

az + bEz, az + bEz + cE2z, dz + ad2z + bd3z + . . . ,

we may form new algorithms, for which all of the theoretical and practical rules
are in the formulas of §16. The Calculus of Variations, in particular, is the
result of a consideration of this kind.

Constant factors, being functions that are eminently distributive and com-
mutative among themselves, are clearly included as particular cases in our for-
mulas. Therefore, the expression lnϕαz is the natural logarithm of the factor ϕα

multiplying z. The other expression ln−1 ψz is the same thing as the common
expression eψz; see §1. It is not even necessary to look elsewhere for a theory of
logarithms - it is all there in definition (55) and in formulas (59), (61), and (62).
For the same reason, the means of expansion given by the basic properties, for
raising an arbitrary polynomial to an arbitrary power are all particular cases of
those which lead to the expansion of formula (68).

18. In the preceding article, we have sketched the set of laws that brings
together and unites all the differential functions, that is, the most general theory
of the differential calculus. The practice of this calculus, which is nothing other
than the execution of the operations given in the definitions, would not form
a separate branch, had we not remarked that, for certain classes of variable
functions, the reduced differential functions present themselves in much simpler
forms than we might have expected. Moreover, in view of the current state of
analysis, it is sufficient to recognize a small number of functions that we call
elementary. If we know the differential functions of these, then following the
ordinary rules of calculation, we are able to find the differentials of the variable
functions composed of them. [122] It would be unnecessary20 here to enter
into any detail concerning the varied states and differences of the elementary
functions. I will restrict myself to researching their differentials.

The elementary simple functions of a single variable x are the monomial
functions

xm, ax, lnx, sinx, cosx,
19Although Servois cites equation (62) here, the result seems in fact to follow from an

application of (74). We are grateful to the referee who pointed this out.
20Servois says “déplacé,”literally “inappropriate.”
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in which we apply a constant difference to x. The elementary composed functions
are

ϕx · ψx, (ϕx)m, aϕx, lnϕx, sinϕx, cosϕx.

To express the differentials of these and, in general, any composite functions,
in terms of the differentials of the simple functions, there exists an important
theorem that we must first establish.

Let y = ϕx and Fy = Fϕx, where ϕ and F are arbitrary functions. Sup-
posing that the difference in y is the constant β, we have, by formula (47),

F (y +m) = Fy +
m

β
dFy +

m2

1 · 2 · β2
d2Fy +

m3

1 · 2 · 3 · β3
d3Fy + . . . .

Here m is arbitrary, so we may let

m = ndϕx+
n2

1 · 2
d2ϕx+

n3

1 · 2 · 3
d3ϕx+ . . . , (79)

and we have

F (y +m) = Fy +
n

β
dFy · dϕx +

n2

1 · 2 · β
dFy · d2ϕx + . . .

+
n2

1 · 2 · β2
d2Fy(dϕx)2 + . . .

+ . . .


(80)

However, by formula (46), taking the assumption (79) into account, we have

ϕ(x+ nα) = ϕx+
n

1
dϕx+

n2

1 · 2
d2ϕx+ . . . = y +m.

Thus, [123]
F (y +m) = Fϕ(x+ nα).

I expand the right hand side of this, using the same formula (46), and I have
the following expression for F (y +m)

F (y +m) = Fϕx+
n

1
dFϕx+

n2

1 · 2
d2Fϕx+ . . . .

Comparing, this to the previous formula (80), we immediately have that21

dFϕx =
dFy
β
· dϕx, (81)

because n is indeterminate. If we let x = ψt and give x the constant difference
α, it is clear that we have

dFϕψt =
dFy
β
· dϕx
α
· dψt,

21This is a form of the Chain Rule.
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by formula (81), and so on.
Given this, and supposing the function ϕ in formula (56) to be the constant

factor a, and z to be equal to 1, we have

dax = ax ln aα, (82)

where α is the constant increment in x. Under this assumption, we have α = ∆x,
0 = ∆2x = ∆3x = . . .. Consequently, it follows from definition (39) that

dx = ∆x = α.

However, from (59) we have

ln aα = α ln a,

so, in place of (82) we have

dax = axdx ln a. (83)

Now suppose that [124]

Fϕx = Fy = aϕx = ay.

Then from theorem (81), we have

daϕx =
day

β
· dϕx.

However, since dy = β by assumption, we have, by (83),

day = ay ln a = aϕx ln a.

Thus, we have

daϕx = aϕx · dϕx · ln a, (84)

that is, the formula for differentiating exponentials.
If we note that ln aϕx = ϕx ln a, and consequently that dϕx · ln a = d ln aϕx,

formula (84) becomes
daϕx = aϕx · d ln aϕx,

in which, if we let Fx = aϕx, which is permissible, we have22

dFx = Fx · d lnFx. (85)

This is an expression of the following theorem: the differential of a variable
function is always equal to the function multiplied by the differential of its
logarithm.

22This is logarithmic differentiation.
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We conclude immediately that

d lnFx =
dFx
Fx

, (86)

which is the formula for differentiating natural logarithms. Taking note that
ln(Fx)m = m lnFx, then by formulas (85) and (86) we have

d(Fx)m = (Fx)m · d ln(Fx)m = m(Fx)m · d lnFx = m(Fx)m−1 · dFx, (87)

which is the formula for differentiating powers.
Since ln(ϕx · Fx) = lnϕx+ lnFx, we have by (85) [125]

d (ϕx · Fx) = ϕx · Fx · d ln (ϕx · Fx) = ϕx · Fx (d lnϕx+ d lnFx) .

Therefore, from (86) we have

d (ϕx · Fx) = Fx · dϕx+ ϕx · dFx, (88)

the formula for the differentiation of products.
Let

Fx =
cosαx+

√
−1 sinαx

cosx α
(89)

where α is a constant and x is variable, with a constant difference of 1. We have

∆Fx =
cosα(x+ 1) +

√
−1 sinα(x+ 1)

cosx+1 α
− cosαx+

√
−1 sinαx

cosx α
.

Now, expanding the cosine and sine of αx+α using the well-known trigonometric
formulas, this reduces to

∆Fx = Fx ·
√
−1 tanα.

Consequently, we have

∆mFx = Fx ·
(√
−1 tanα

)m
,

in general. Thus, according to definition (39), we have

dFx = Fx ·
[√
−1 tanα− 1

2
(√
−1 tanα

)2
+ . . .

]
.

Comparing this to formula (55), we have

dFx = Fx · ln
(
1 +
√
−1 tanα

)
. (90)

However, by (88),

dFx =
(

1
cosα

)m
· d
(
cosαx+

√
−1 sinαx

)
+
(
cosαx+

√
−1 sinαx

)
· d
(

1
cosα

)x
. (91)
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On the one hand, by differentiating the well-known formula [126]

cos2 αx+ sin2 αx = 1

using formula (87), we find that

d cosαx = − sinαx
cosαx

d sinαx, (92)

and consequently that

d
(
cosαx+

√
−1 sinαx

)
= d sinαx ·

√
−1

cosαx
(
cosαx+

√
−1 sinαx

)
. (93)

On the other hand, in recalling that dx = 1 we have, by formula (83),

d
(

1
cosα

)x
= − 1

cosα

x

ln cosα.

Therefore, substituting this expression and the one in (93) into (91), then com-
paring to (90), we have

d sinαx ·
√
−1

cosαx
− ln cosα = ln

(
1 +
√
−1 tanα

)
.

From this, if we let23

A
√
−1 = ln

[
cosα

(
1 +
√
−1 tanα

)]
,

we conclude that
d sinαx = A cosαx. (94)

Also, by substituting this expression in (92), we have

d cosαx = −A sinαx. (95)

If we change αx in these to x, we have the formulas

d sinx =
A

α
cosx and d cosx = −A

α
sinx

Here, the difference in x is 1. If x were a function of a different variable, we
would have, by virtue of theorem (81),

d sinx =
A

α
dx cosx and d cosx = −A

α
dx sinx. (96)

In these formulas, the quantity α is an arbitrary arc.24

23In the original the following equation was given as A
√
−1 = ln

`
cosα+

√
−1 tanα

´
.

24Servois is using α to represent an arbitrary real number, but because it is the argument
of sine, cosine and tangent, he also chooses to refer to it as an arc.
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[127] The constant A, although implicitly imaginary,25 is easily put into the
form of a real number. Indeed, it follows from the well-known formula

cos2 α =
1

1 + tan2 α
=

1(
1 +
√
−1 tanα

) (
1−
√
−1 tanα

) ,
that

A
√
−1 =

1
2

ln
[
cos2 α ·

(
1 +
√
−1 tanα

)2]
=

1
2

ln
(

1 +
√
−1 tanα

1−
√
−1 tanα

)
.

Expanding the last expression according to a well-known logarithmic formula,
and dividing by

√
−1,

A = tanα− 1
3

tan3 α+
1
5

tan5 α− . . . . (97)

Therefore, had we not otherwise known that this expression for A was equal
to α, we would still have the means, according to formula (96) and (97), to
differentiate trigonometric functions. Furthermore, we may show that A

α = 1 by
elementary means alone (see Theory of Analytic Functions, No. 28 in the first
edition, No. 23 in the second.)26

19. We have seen the differential calculus arise from the simple expansion of
functions of one variable according to the powers of this variable. This calculus
will now assist us in ascending to something even more general.

Suppose that, relating the variables x and y, we give the equation V = 0
and the equation z = Fx. We may suppose, at least, that we have deduced
y = ϕx from the first of these, and that between this and the second equation,
we have eliminated x, to give z = fy, so that the hypothesis amounts to giving
us the three equations

y = ϕx, z = Fx, and z = fy. (98)

Then, according to formula (45) we have [128]

Fx = fy = fp+
(y − p)

1
dfp
β

+
(y − p)2

1 · 2
d2fp

β2
+ . . . . (99)

In this expression, p is arbitrary and has β as its constant difference. I differ-
entiate equation (99) with respect to x alone and I have

dFx = dy · dfp
β

+
(y − p)

1
dy · d2fp

β2
+ . . . . (100)

Now I suppose that by letting y = p in V = 0, we find that x = θ, among others,
and reciprocally. By (98), we have

p = ϕθ, dp = dϕθ, and fp = fϕθ = Fθ.

25Such a use of “imaginary” by Servois and his contemporaries corresponds more or less to
the modern word “complex.” It does not mean a purely imaginary number.

26[Lagrange 1797].
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Next, I let y = p in (100) and this equation becomes

dFθ = dϕθ · dfp
β
, (101)

from which
dfp
β

=
dFθ
dϕθ

.

Equation (101) is the same as (81), derived in a different manner. I divide
equation (100) by dy, I differentiate with respect to x, and I have

d
(

dFx
dy

)
= dy · d2fp

β2
+

(y − p)
1

dy · d3fp

β3
+ . . . . (102)

I let y = p in this, and I have

d2fp

β2
=

1
dϕθ

d
(

dFθ
dϕθ

)
.

I manipulate equation (102) as I did (99) and (100). That is, I divide by dy,
I differentiate, I let y = p, and I have

d3fp

β3
=

1
dϕθ

d
[

1
dϕθ

d
(

dFθ
dϕθ

)]
.

The induction is obvious, and we see that, in general, I have [129]27

dnfp
βn

=
1

dϕθ
d
{

1
dϕθ

d
{

1
dϕθ

d
{
. . .

1
dϕθ

d
{

dFθ
dϕθ

}
. . .

}}}
. (103)

In this expression, there are n− 1 subordinate differentials. This is very simple,
but we may derive another expression from it that lends itself better to expan-
sions as needed in practice, by employing a procedure which is not devoid of
elegance.

I let
dfp
β

= A,
d2fp

β2
= B, . . . ,

dnfp
βn

= N,

for short. I successively multiply equation (99)28 by
x− θ
y − p

,
(
x− θ
y − p

)2

, . . . .

What’s more, noting that in general

dy
(y − p)m

= − 1
m− 1

d(y − p)−(m−1),

27The original bracketing of equation (103) was incorrect.
28Servois almost certainly means equation (100).
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a relation that is easily verified using formula (87), I have29(
x− θ
y − p

)
dFx = A(x− θ) · dy

y − p
+B(x− θ) · dy

+
C

1 · 2
(x− θ)(y − p)dy + . . .(

x− θ
y − p

)2

dFx = −A(x− θ)2 · d(y − p)−1 +B(x− θ)2 · dy
y − p

+
C

1 · 2
(x− θ)2dy + . . .(

x− θ
y − p

)3

dFx = −A
2

(x− θ)3 · d(y − p)−2

−B(x− θ)3 · d(y − p)−1

+
C

1 · 2
(x− θ)3 dy

y − p
+ . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



(104)

Now, it follows from (45) that we have

y − p = (x− θ)dϕθ +
(x− θ)2

1 · 2
d2ϕθ + . . . , (105)

and, differentiating with respect to x,

dy = dϕθ + (x− θ)d2ϕθ + . . . . (106)

It therefore follows from (106) that (y−p)−m and d(y−p)−m have the forms
[130]

(y − p)−m = A(x− θ)−m +B(x− θ)−(m−1) + . . .

+ G(x− θ)−1 +H +K(x− θ) + L(x− θ)2 + . . .

d(y − p)−m = A′(x− θ)−m−1 +B′(x− θ)−m + . . .

+ G′(x− θ)−2 + 0 +K ′ + L′(x− θ) + . . . , (107)

respectively. From this last formula, we conclude that, for m a whole number
greater than 0, the expansion of d(y − p)−m following the powers of (x − θ)
is missing only the term multiplied by (x − θ)−1. It further follows that, for
a whole number n also greater than 0, the expansion (x − θ)n+1d(y − p)−m is
missing the term multiplied by (x− θ)n. Furthermore, it is evident from (107)
that, for n greater than or equal to m, this expansion will include no negative

29In [Servois 1814a] there were many typographical errors in equations (104). The first

right-hand side read A(x− θ) · dy
y−p

+B(x− θ) · dy + C
1·2 (x− θ)dy + . . ., the second −A(x−

θ) · d(x− θ)−1 +B(x− θ) · dy
y−p

+ C
1·2 (x− θ)2dy+ . . . and the third −A

2
(x− θ) · d(y− p)−2 −

B(x− θ) · d(y − p)−1 + C
1·2 (x− θ)3 dy

y−p
+ . . ..
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powers of (x − θ). However, it follows from formula (87) that dn(x − θ)q = 0
when n > q and has the form R(x− θ)r, where r is positive, when n < q. Thus,
taking the differential, dn, of the expression (x−θ)n+1d(y−p)−m, all the terms
in which (x−θ) has an exponent less than n will be destroyed, and all the others
will have the form R(x − θ)r. Because the term in (x − θ)n is absent, in all of
the others, the exponent of (x − θ) is greater than n. Consequently, when we
let x = θ, we always have

dn
[
(x− θ)n+1 · d(y − p)−m

]
= 0. (108)

Secondly, it follows from equation (106) that the expression (x− θ)n+1 · dy
y−p

is always of the form

(x− θ)n+1 dy
y − p

= (x− θ)n + P (x− θ)n+1 + . . . .

But by (87), dn(x − θ)n = 1 · 2 · 3 · · ·n. Thus, when we let x = θ, we always
have

dn
[
(x− θ)n+1 · dy

y − p

]
= 1 · 2 · 3 · · ·n. (109)

I will now apply these two important observations to the series of equations
(104).

[131] I let x = θ in the first of these. Then the first term becomes A, because
of (109), and the following terms vanish. Thus,

A =
{
x− θ
y − p

dFx
}

0

.

I use the 0 placed on the side of our expression to indicate that one takes
x− θ = 0 in the expansion.

I differentiate the second equation of (104) once, then I let x = θ. The first
term, −Ad

[
(x− θ)2d(y − p)−1

]
, is equal to zero, by (108). The second term,

Bd
[
(x− θ)2 dy

y−p

]
becomes B, by (109). All the following terms vanish, so that

B = d

{(
x− θ
y − p

)2

dFx

}
0

.

I differentiate the third equation of (104) twice and I let x = θ. The first
two terms of the right-hand side are zero, by (108). The third term reduces to
C, by (109). The following terms are clearly zero, so that

C = d2

{(
x− θ
y − p

)3

dFx

}
0

.

It’s unnecessary to go any further to conclude with all rigor that in general

N =
dnfp
βn

= dn−1

{(
x− θ
y − p

)n
dFx

}
0

. (110)
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Thus, equation (99) becomes

Fx = Fθ +
(y − p)

1

{
x− θ
y − p

dFx
}

0

+
(y − p)2

1 · 2
d

{(
x− θ
y − p

)2

dFx

}
0

+
(y − p)3

1 · 2 · 3
d2

{(
x− θ
y − p

)3

dFx

}
0

+ . . . . (111)

Alternately, if we wish to replace y and p with their corresponding expressions
ϕx and ϕθ,30

Fx = Fθ + (ϕx− ϕθ)
{

(x− θ)dFx
ϕx− ϕθ

}
0

+
(ϕx− ϕθ)2

1 · 2
d
{

(x− θ)2dFx
(ϕx− ϕθ)2

}
0

+
(ϕx− ϕθ)3

1 · 2 · 3
d2

{
(x− θ)3dFx
(ϕx− ϕθ)3

}
0

+ . . . . (112)

This is the formula of Professor Burman (see Memoirs de l’Institut 1st Class,
Vol. II, p. 16).31 In the second of the two memoirs of which this is an extraction,
I have deduced it from the celebrated formula of Lagrange on the recurrence of
series.

In expression (110) of the general term of the coefficients of formula (111),
we may, before differentiating, replace y− p with its expression in x, if the form
of the equation V = 0 makes this possible. If not, then after differentiating, we
must substitute for x−θ

y−p ,dy,d
2y, . . ., what these functions become when x − θ

and y − p vanish at the same time. This will be possible, in general, using the
equation V = 0.

If the given equation between x and y is simply y = ϕx, then by (105) we
have (

x− θ
y − p

)
0

=
1

dϕθ
,

supposing that all the while the equation ϕx = 0 gives x but a single value, equal
to θ. It is this that we must substitute in place of x−θ

y−p after the expansions.
If the given equation between x and y is, for example,

x− θ = (y − p)ψx,

which does indeed give x = θ when y = p and reciprocally, then equation (111)
becomes

Fx = Fθ + (y − p)ψθ · dFθ +
(y − p)2

1 · 2
d
[
(ψθ)2 · dFθ

]
+

(y − p)3

1 · 2 · 3
d2
[
(ψθ)3 · dFθ

]
+ . . . . (113)

30In [Servois 1814a] the d2 was absent in the last term of (112).
31This reference is not to Burman’s paper itself, but to a report on it by Legendre; see

[Grattan-Guinness 1990, pp. 167-168] for more on Burman’s formula.
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[133] When we let p = 0, then this is the formula of Lagrange that we have just
mentioned.

Let the relation between x and y be

x− θ = (y − λ)ψ(x, y), (114)

which gives x = θ when y = λ, and reciprocally.
In the given function F (x, y) and in (114), I consider x to be the only variable

and, by formula (113), I have

F (x, y) = F (θ, y) + (y − λ)
d
θ
F (θ, y) · ψ(θ, y) + . . .

+
(y − λ)n

1 · 2 · · ·n
dn

θ

{
d
θ
F (θ, y) · [ψ(θ, y)]n

}
+ . . . . (115)

F (θ, y) and the coefficients of (y− λ) are functions of y that I expand following
the powers of (y − λ), by means of formula (45) and, letting u = F (θ, λ) and
v = ψ(θ, λ) for short, I have

F (θ, y) = u+ (y − λ)
d
λ
u+

(y − λ)2

1 · 2
d2

λ
u+

(y − λ)3

1 · 2 · 3
d3

λ
u+ . . . and

dn−1

θ

{
d
θ
F (θ, y) · [ψ(θ, y)]n

}
=

dn−1

θ

(
d
θ
u · vn

)
+(y − λ)

d
λ

dn−1

θ

(
d
θ
u · vn

)
+ . . . .

I substitute these results in (115), re-order according to the powers of (y − λ),
and I have

F (x, y) = u+A(y − λ) +B
(y − λ)2

1 · 2
+ . . .+N

(y − λ)n

1 · 2 · · ·n
+ . . . . (116)

In this equation, the general term of the coefficients is32

N =
dn

λ
u+ n

dn−1

λ

(
d
θ
uv

)
+
n

1
n− 1

2
dn−2

λ

d
θ

(
d
θ
uv2

)
+ . . .

+ n
d
λ

dn−2

θ

(
d
θ
uvn−1

)
+

dn−1

θ

(
d
θ
uvn

)
. (117)

[134] Such a formula as (116) has a wide range of applications, of which I
have made a number in my two memoirs. I was brought to them immediately,
and by a very different method: that of the elimination of arbitrary functions,
by partial differentiation, a method which, in the hands of Laplace, Lagrange,
etc., has produced brilliant results and which, in the matter with which we are
occupying ourselves, permits us to broach the following very general problem
with success: given an equation among several variables, to expand a given

32In [Servois 1814a], the coefficient n was missing from the penultimate term.
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function of one or several of these variables into a series arranged according to
powers of one or several of the variables. I can give here but an idea of the way
to proceed, by making an application to a case that is not very complicated.

Let the equation
ft = uϕ(x+ t) + vψ(x+ t) (118)

be given. We wish to expand F (x+ t) according to the powers and products of
u and v.

The solution of equation (118) gives an expression for t of the form t =
f(u, v, x), where there are no other equations constraining u, v, and x. Thus,
we many consider t to be a function of three independent variables, u, v, and
x, whose differences are constant and equal to one. Given this, we know, and it
is furthermore easy to conclude it from formula (78, §17) that, letting x+ t be
p for simplicity, we have

Fp = Fp0 + u
d
u
Fp0 +

u2

1 · 2
d2

u
Fp0 + . . .

+ v
d
v
Fp0 + 2

uv

1 · 2
d
u

d
v
Fp0 + . . .

+
v2

1 · 2
d2

v
Fp0 + . . .

+ . . . .


(119)

[135] The zero, on the sides of Fp, d
uFp,

d
vFp, . . . , signify that the variables u

and v are to be set to zero after expanding.
I successively differentiate Fp with respect to u, v, and x, and making use

of theorem (81), I have

d
u
Fp = dFp · d

u
t,

d
v
Fp = dFp · d

v
t and

d
x
Fp = dFp

(
1 +

d
x
t

)
.

Eliminating dFp from among these, I have

d
u
Fp =

d
x
Fp ·

d
u t

1 + d
x t

and
d
v
Fp =

d
x
Fp ·

d
v t

1 + d
x t
. (120)

I successively differentiate equation (118) with respect to u, v and x, and I
write the results as follows

d
u
t (dft− udϕp− vdψp) = ϕp, (121)

d
v
t (dft− udϕp− vdψp) = ψp and (122)(

1 +
d
x
t

)
(dft− udϕp− vdψp) = dft. (123)

I eliminate from these three the common polynomial factor on the left-hand
sides, and I have

d
u
t =

ϕp

dft

(
1 +

d
x
t

)
and

d
v
t =

ψp

dft

(
1 +

d
x
t

)
. (124)
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I substitute the expressions of (124) into equations (120), and I have

d
u
Fp =

d
x
Fp · ϕp

dft
and

d
v
Fp =

d
x
Fp · ψp

dft
(125)

Because the function F is arbitrary, these give [136]

d
u
ϕp =

d
x
ϕp · ϕp

dft
,

d
v
ϕp =

d
x
ϕp · ψp

dft
,

d
u
ψp =

d
x
ψp · ϕp

dft
, and

d
v
ψp =

d
x
ψp · ψp

dft
.

 (126)

When we let u = v = 0 in (118), it follows that ft = 0. Supposing that this
equation gives t = θ, then we have Fp0 = F (x+ θ) and, by equation (125),

d
u
Fp0 =

d
x
F (x+ θ) · ϕ(x+ θ)

dfθ
and

d
v
Fp0 =

d
x
F (x+ θ) · ψ(x+ θ)

dfθ
.

Here, already, are the first three terms of the expansion (119) completely deter-
mined. To go beyond this, we differentiate equations (125), the first one with
respect to u and v, and the second with respect to v, and we have expressions
for d2

u Fp,
d
u

d
vFp and d2

v Fp that contain, linearly, the differentials of Fp, ϕp, ψp,
and t with respect to u, v, and x. We eliminate the differentials with respect
to u and v by means of equations (124), (125), and (126). Having made these
reductions, it follows that

d2

u
Fp =

d
x

[
d
xFp · (ϕp)

2
]

(dft)2

−
d
xFp · (ϕp)

2 · d2ft
(
1 + 2 d

x t
)

(dft)3
,

d
u

d
v
Fp =

d
x

[
d
xFp · ϕp · ψp

]
(dft)2

−
d
xFp · ϕp · ψp · d

2ft
(
1 + 2 d

x t
)

(dft)3
and

d2

v
Fp =

d
x

[
d
xFp · (ψp)

2
]

(dft)2

−
d
xFp · (ψp)

2 · d2ft
(
1 + 2 d

x t
)

(dft)3
.



(127)

In these equations, we satisfy the hypothesis u = v = 0, which gives t = θ, [137]
p = x + θ and, by (123), d

x t = 0, and we have the three differential coefficients
d2

u Fp0,
d
u

d
vFp0 and d2

v Fp0.
We continue in the same manner. That is, we differentiate equation (127)

with respect to u and v, to get d3

u Fp,
d2

u
d
vFp,

d
u

d2

v Fp and d3

v Fp. In the resulting
expressions, the differentials with respect to u and v of Fp, ϕp and ψp are
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eliminated by the equations (125) and (126). d
u t and d

v t are eliminated using
(124). We eliminate the other two, d

u
d
x t and d

v
d
x t, which are the same as d

x
d
u t

and d
x

d
v t, respectively, after having differentiated equation (124) with respect to

x. Then we satisfy the hypothesis u = v = 0, which gives 0 = d
x t = d2

x t and in
general dn

x t = 0, which is worthy of note and is easily deduced from equation
(123). We now have the four coefficients

d3

u
Fp0,

d2

u

d
v
Fp0,

d
u

d2

v
Fp0 and

d3

v
Fp0.

The route to follow in order to continue indefinitely is easily recognized. It
is clear that everything reduces to differentiation, with respect to u and v, of
the last results obtained, and the elimination of the differentials of Fp, ϕp, and
ψp, with respect to u and v, using (125), and of the differentials of the form
dn

x
d
u t and dn

x
d
v t from equation (124), differentiated with respect to x as many

times as necessary.
Supposing now, in particular, that ft = t and from this dft = 1, and

applying this hypothesis in (125) and (126) we have, in the first place, [138]

d
u

{
d
x
Fp · (ϕp)m

}
= (ϕp)m · d

x

d
u
Fp+

d
x
Fp · d

u
(ϕp)m.

Since, by (125) and (126)

d
x

d
u
Fp = ϕp · d2

x
Fp+

d
x
Fp · d

x
ϕp and

d
u

(ϕp)m = m(ϕp)m−1 · d
u
ϕp = m(ϕp)m · d

x
ϕp,

it follows, by reducing, that

d
u

{
d
x
Fp · (ϕp)m

}
=

d
x

{
d
x
Fp · (ϕp)m+1

}
. (128)

We find, in the same way, that

d
v

{
d
x
Fp · (ϕp)m · (ψp)n

}
=

d
x

{
d
x
Fp · (ϕp)m · (ψp)n+1

}
. (129)

Given this, by differentiating the first equation of (125) successively with respect
to u, we have, by (128)

d2

u
Fp =

d
u

(
d
x
Fp · ϕp

)
=

d
x

{
d
x
Fp · (ϕp)2

}
,

d3

u
Fp =

d
x

d
u

[
d
x
Fp · (ϕp)2

]
=

d2

x

{
d
x
Fp · (ϕp)3

}
,

and, in general,
dm

u
Fp =

dm−1

x

{
d
x
Fp · (ϕp)m

}
. (130)
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[139] Next, we differentiate (130) successively with respect to v. Making use of
(129), we have

d
v

dm

u
Fp =

dm

u

d
v
Fp =

dm−1

x

d
v

{
d
x
Fp · (ϕp)m

}
=

dm

x

{
d
x
Fp · (ϕp)mψp

}
,

dm

u

d2

v
Fp =

dm+1

x

{
d
x
Fp · (ϕp)m · (ψp)2

}
,

and, in general,

dm

u

dn

v
Fp =

dm+n−1

x

{
d
x
Fp · (ϕp)m · (ψp)n

}
. (131)

This is the general term of the coefficients of the expansion we seek, where
nothing remains except to satisfy the hypothesis u = v = 0, which gives t = 0
by (118).33 Therefore, in our general term (131), p changes to x, the partial
differentials with respect to x become total, and so

dm

u

dn

v
Fp0 = dm+n−1 {dFx · (ϕx)m · (ψx)n} . (132)

Finally, we have by (119)

F (x+ t) = Fx + udFx · ϕx +
u2

1 · 2
d
{

dFx · (ϕx)2
}

+ . . .

+ v dFx · ψx + 2
uv

1 · 2
d {dFx · ϕx · ψx} + . . .

+
v2

1 · 2
d
{

dFx · (ψx)2
}

+ . . .

+ . . .


(133)

I will not make applications of the expansion formulas [140] that we have just
read, so as not to exceed the limits I have set myself. Indeed, my project was
simply to offer a somewhat detailed outline of the manner in which I have treated
the principles of the differential calculus in the first part of the work, which I
had the honor of presenting to the 1st Class of the Institute. The applications of
the formulas of the expansion of functions into series are the object of a second
part. I succeeded in deducing from these formulas, without needing recourse to
any new notation, the principle formulas that have up to now been based on
combinatorial analysis or the calculus of derivations. The Commissioners of the
Class were willing to say on this matter, in their report:

“In thereby recalling to the differential calculus several methods,
some of which don’t seem very appropriate to the current state of
analysis, (the author) has done something that is very useful for the

33Strictly speaking, the hypothesis u = v = 0 gives ft = 0, as Servois noted on p. 35.
However, because Servois is now considering the case that ft = t, it follows that t = 0.

Bradley, Robert E. and Salvatore J. Petrilli, Jr., “Servois’ 1814 Essay on a New Method of
Exposition of the Principles of the Differential Calculus, with an English Translation,” Loci:
Convergence (November 2010), DOI: 10.4169/loci003597



REFERENCES 38

science. It is necessary that all new facts, whenever they make up
an ensemble, even if they don’t seem individually to be of very great
importance, be reconciled to the theories that form the body of the
science, and it is most appropriate to encourage this in the culture.”

It would be even more foreign to my design to enter into any detail about the
third part, in which I am concerned with the research on the simplest practical
means of expanding the differentials of composed functions later on, only once
we had considered constant differences, so that the entirety is given immediately
by a single expansion; that is, by the methods of the second part.

But perhaps it is not without value at this point to cast a general glance on
the various systems which, up to this point, have been followed in the exposition
of the principles of the differential calculus. The reflections that this examina-
tion will give rise to would be entirely appropriate to underscore the advantages
of the theory which has just been described, to prevent false interpretations,
and finally to refute the objections which this theory could and may yet give
rise to.
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