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Introduction. A typical optimization problem in beginning calculus courses is the
‘fencing-a-field’ problem:

Find the dimensions of the rectangular field of maximum area for a fixed perime-
ter.

There is a natural “flip-side” to this problem:

Find the dimensions of the rectangular field of minimum perimeter for a fixed
area.

It is apparent that these problems are related, but what, exactly, is the relationship
between them? Do other optimization problems have a flip-side? If so, how does one
formulate the flip-side of a given problem?

We give an answer to these questions by considering the more general problem of
optimizing a function f of two variables subject to a constraint g(x, y) = c using La-
grange multipliers. As the fencing-a-field problem suggests, the flip-side of a problem
involves interchanging the roles of f and g (a process that is meaningful because the
Lagrange multiplier condition ∇ f = λ∇g is symmetric in f and g). In this note we
define what is meant by the flip-side of a problem and prove a result that relates an
extremum of a problem to an extremum of its flip-side. In following the steps of the
proof, students can see how properties of the gradient—in particular the property that
the gradient points in the direction of the greatest rate of increase in the values of a
function—can be useful visual tools in analyzing optimization problems.

Several articles on Lagrange multipliers have appeared in the CMJ (see for instance
[1], [2], [3], [5]), but it seems that the general relationship between a problem and its
flip-side (as we call it here) has not been discussed.

The general problem. To better see the relationship between a problem and its
flip-side, let’s solve a specific fencing-a-field problem. Suppose the amount of fencing
available is 40 units, say. Then the problem is this: Maximize A(x, y) = xy subject
to the constraint P(x, y) = 2x + 2y = 40. The answer is a square of side 10 and
area 100. The flip-side problem is about fields of area 100: Minimize P subject to the
constraint A(x, y) = 100. Again the answer is a square of side 10.

Following this example leads us to the following general situation. Suppose f and
g are functions of two variables and f has a local maximum (or minimum) value
m = f (a, b) at the point (a, b) subject to the constraint g(x, y) = c. The flip-side
problem is: Does g have a local extremum at (a, b) on the constraint f (x, y) = m?
And if so, is the extremum a local maximum or minimum?

We show that in general (under appropriate smoothness conditions on f and g) the
flip-side problem always has a local extremum at (a, b), and the type of extremum
depends on whether ∇ f and ∇g point in the same or opposite directions at (a, b).
We will say that f has a local maximum point at (a, b) on the constraint g(x, y) = c
if f (a, b) > f (x, y) for all (x, y) on the level set g(x, y) = c in some disc centered
at (a, b).
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Theorem. Suppose f and g are smooth functions of two variables, ∇ f (a, b) �= 0,
and

∇ f (a, b) = λ∇g(a, b).

Let f (a, b) = c1, g(a, b) = c2. If f has a local maximum (minimum) point at (a, b)

on the constraint g(x, y) = c2, then the following hold:

1. If λ > 0, then g(x, y) has a local minimum (maximum) at (a, b) on the constraint
f (x, y) = c1.

2. If λ < 0, then g(x, y) has a local maximum (minimum) at (a, b) on the constraint
f (x, y) = c1.

Proof. We prove the result when f has a local maximum at (a, b). Since

∇ f (a, b) �= 0 and ∇g(a, b) �= 0

the level sets f (x, y) = c1 and g(x, y) = c2 are smooth curves with nonvanishing
tangent vectors in some disc centered at (a, b) [1]. Let’s call these curves γ f and γg,
respectively, as in Figure 1(a). With this terminology, the hypothesis states that f has
a local maximum value c1 = f (a, b) on γg. So we can find a small enough disc D on
which γ f and γg are smooth curves and f (x, y) < c1 at all other points of γg inside D.

Now f (x, y) > c1 on one side of γ f and f (x, y) < c1 on the other side in D. This
is because if f (x, y) > c1 on both sides, then c1 = f (a, b) is the minimum value of f
in D, and so ∇ f (a, b) = 0, contradicting the hypothesis. Thus the intersection of the
sets

M f = {
(x, y) : f (x, y) ≥ c1

}
and L f = {

(x, y) : f (x, y) ≤ c1

}
in D is γ f as in Figure 1(a). We have used the letters M and L to indicate the sets
where f is “more than” and “less than” (or equal to) c1, respectively. Of course g has
the same properties as f , so in the same way we define Mg and Lg with respect to c2.
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(a) γg is contained in L f . (b) ∇ f points into M f .

Figure 1. f is larger than c1 on one side of γ f and smaller on the other.

Since f attains its maximum value on γg at (a, b), it follows that the values of f
on γg are all less than or equal to c1, that is, γg ⊂ L f . See Figure 1(a). (This implies
that γg is on one side of γ f , so these curves do not cross in D.) Because the gradient
always points in the direction of greatest increase, it follows that ∇ f (a, b) points into
M f (Figure 1(b)).

1. If λ > 0 then ∇ f (a, b) and ∇g(a, b) point in the same direction, so we must
have M f ⊂ Mg as in Figure 2(a). In this case γ f ⊂ Mg , that is, the values of g
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(a) ∇ f , ∇g point in same direction. (b) ∇ f , ∇g point in opposite directions.

Figure 2. ∇g tells us on which side of γg is Mg

on γ f are all greater than or equal to c2. Thus g has the local minimum value
g(a, b) = c2 on γ f .

2. If λ < 0 then ∇ f (a, b) and ∇g(a, b) point in opposite directions. So we must
have Mg ⊂ L f as in Figure 2(b). In this case γ f ⊂ Lg, that is, the values of
g on γ f are all less than or equal to c2. Thus g has the local maximum value
g(a, b) = c2 on γ f .

Moving a river and other flip-side problems. Once a constrained optimization
problem has been solved, we can use the theorem to state and solve the flip-side prob-
lem. For an applied problem, it is interesting to consider the physical interpretation of
the flip-side. For the fencing-the-field problem we want to maximize area, for the flip-
side we want to minimize perimeter. We consider two other common first-semester
calculus problems.

The milkmaid problem [2] asks for the minimum distance a milkmaid needs to walk
from her home to fetch water from a river and take it to the barn. Specifically, suppose
her home is at (−3, 0), the barn at (3, 0), and the river is the line R(x, y) = 100, where
R(x, y) = 16x + 15y. To walk to a point (x, y) and then to the barn the maid trav-
els a distance d(x, y) = √

(x + 3)2 + y2 + √
(x − 3)2 + y2. The problem can now be

stated as follows: Minimize d subject to the constraint R(x, y) = 100. Using Lagrange
multipliers we find that λ > 0 and the minimum is d(4, 12

5 ) = 10. By our theorem the
flip-side problem is to maximize R subject to the constraint d(x, y) = 10; moreover,
the local maximum value is R(4, 12

5 ) = 100. We can interpret the flip-side problem as
follows: If the maid insists that she will walk a distance of exactly 10, then we must
move the river for her! That is, we must find the maximum value of c so that she can
just reach the river R(x, y) = c and then walk to the barn, travelling a total distance
of 10.

Another ubiquitous problem in first semester calculus courses is the ladder-around-
the-corner problem: Find the length of the longest ladder that can go around a rectan-
gular corner with hallways of fixed widths [3]. Using our theorem it is easy to state
and solve the flip-side of this problem, but what physical quantity are we actually
minimizing in the flip-side problem?

In general, every problem of the type we describe here has a flip-side. For applied
problems it is interesting to try and find meaning for the quantities being optimized in
the flip-side problem.
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It is well known that the p-series is 1 + 1
2p + · · · + 1

n p + · · · converges for p > 1
and diverges for p ≤ 1. In standard calculus textbooks (such as [3] and [4]), this is
usually shown using the integral test. In this note, we provide an alternative proof of
the convergence of the p-series without using the integral test. In fact, our proof is an
extension of the nice result given by Cohen and Knight [2].

We begin by giving the following estimate for the partial sum of a p-series:

Lemma. Let sn(p) be the nth partial sum of the p-series
∑∞

k=1 1/k p.

(a) For p > 0,

1 − 1

2p
+ 2

2p
sn(p) < s2n(p) < 1 + 2

2p
sn(p),

(b) For p < 0,

1 + 2

2p
sn(p) < s2n(p) < 1 − 1

2p
+ 2

2p
sn(p).

Proof. As sn(p) is the nth partial sum,

s2n(p) = 1 + 1

2p
+ 1

3p
+ · · · + 1

(2n)p

= 1 +
[

1

2p
+ 1

4p
+ · · · + 1

(2n)p

]
+

[
1

3p
+ 1

5p
+ · · · + 1

(2n − 1)p

]
.

For p > 0,

s2n(p) > 1 + 1

2p
sn(p) +

[
1

4p
+ 1

6p
+ · · · + 1

(2n)p

]
.

Thus,

s2n(p) > 1 + 1

2p
sn(p) − 1

2p
+ 1

2p
sn(p) = 1 − 1

2p
+ 2

2p
sn(p).
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