
(a) Estimate (1)

(b) Estimate (2) (c) Estimate (3)

Figure 1.

f (x) = x−4 and ε = .5 × 10−6 yields n ≥ 16. Using S16
∼= 1.08224917 (to 8 places)

and (3) yields 1.08232300 ≤ S ≤ 1.08232337; hence S ∼= 1.082323, correct to 6
places. To obtain the same accuracy with (2) requires n ≥ 21, and with (1) requires
n ≥ 38.
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◦

A Modified Discrete SIR Model
Jennifer Switkes (jmswitkes@csupomona.edu), California State Polytechnic Univer-
sity, Pomona, CA 91768

A couple of years ago in a Calculus I course, I introduced my students to the classic
Kermack-McKendrick SIR model [1] for the spread of an epidemic:

dS

dt
= −aS(t)I (t),

d I

dt
= aS(t)I (t) − bI (t), (8)

d R

dt
= bI (t),

where S(t), I (t), and R(t) represent, respectively, the number of “susceptibles,” “in-
fecteds,” and “recovereds” in a population at time t , with time measured in days. The
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term aS(t)I (t) models an assumption that the rate at which susceptible individuals
become infected is proportional to the number of interactions between susceptibles
and infecteds, with this number of interactions itself proportional to the product of the
populations of susceptibles and infecteds. The term bI (t) models an assumption that
the rate at which infected individuals recover is proportional to the current number of
infected individuals, with the period of infection being p = 1/b days (see, e.g., [2,
pp. 611–612] for a discussion of the classic SIR model).

After class, Allison, a pre-med student working hard but struggling through calcu-
lus, stayed to talk about the SIR model with me. She was troubled by the modeling
assumptions implicit in the term bI (t). She pointed out that the assumption of a p-day
period of infection does not imply that a fraction 1/p of the infected population will
recover each day, since there is no reason to expect a uniform distribution for the length
of time that individuals in the infected class have been infected. I showed Allison the
idea behind the natural discrete approximation to the continuous SIR model,

Sn = Sn−1 − aSn−1 In−1
t,

In = In−1 + (aSn−1 In−1 − bIn−1) 
t, (9)

Rn = Rn−1 + bIn−1
t,

obtained by applying Euler’s Method to (8) with time-step 
t . Let S(0) = S0,
I (0) = I0, and R(0) = R0, so that Sn , In, and Rn represent the number of suscep-
tibles, infecteds, and recovereds at time n
t .

Allison and I decided to replace bIn−1
t in (9) by an expression representing the ac-
tual number of infected individuals who fell sick p days before time (n − 1)
t . These
individuals recover between times (n − 1)
t and n
t and so move into the class
of recovereds at time n
t . Let L = p/
t be the number of time steps that a newly
infected individual remains infected. Assume that 
t is chosen such that L is integer-
valued. Then the number of infected individuals who fell sick p days before time
(n − 1)
t is given by Sn−1−L − Sn−L , the difference between the number of suscep-
tible individuals at time (n − 1)
t − p and at time n
t − p. Our modified discrete
SIR model became

Sn = Sn−1 − aSn−1 In−1
t,

In = In−1 + aSn−1 In−1
t − [Sn−1−L − Sn−L ] , (10)

Rn = Rn−1 + [Sn−1−L − Sn−L ] ,

for N > 0. We assumed that we had a “history” for the epidemic, a specification of Sk ,
Ik , Rk for all integer k for which −L ≤ k ≤ 0. This modified discrete SIR model (10)
takes into account the “age” structure of the population of infected individuals and is
just as easy to simulate as the discrete model (9).

Let a = 0.00025, p = 3, and 
t = 0.1. Then b = 1/3 and L = 30. Imagine a
student body of size 10,000 returning to school from the summer break. Suppose that
one student became infected with a highly contagious flu one day before returning.
Figures 1 and 2 illustrate the predictions of models (9) and (10), respectively, over the
first two weeks of the school year. The modified SIR model indicates a much higher
maximum number of infecteds but also a much faster recovery for the student body as
a whole.

Through investigating the SIR model, Allison learned first-hand about mathemati-
cal modeling and discovered that mathematics plays an important role in her own field
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Figure 1. Classical SIR Model given by (9): An infected student returns to campus one day
after infection (a = 0.00025, b = 1/3, 
t = 0.1, S0 = 9999, I0 = 1, R0 = 0): Sn (solid),
In (long dashes), Rn (short dashes).
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Figure 2. Modified SIR Model given by (10): An infected student returns to campus one day
after infection (a = 0.00025, b = 1/3, 
t = 0.1, S0 = 9999, I0 = 1, R0 = 0): Sn (solid), In
(long dashes), Rn (short dashes).

of medicine. Allison was profoundly affected by the opportunity to use her knowledge
and experience in order to think deeply about, and modify, an existing mathematical
model. The SIR model provides an excellent opportunity to introduce calculus students
to the methods and art of mathematical modeling, to analyze analytically and numeri-
cally a non-linear system of ordinary differential equations, to look at the natural con-
nection between continuous and discrete dynamical systems, and to tie sophisticated
mathematics to a subject of interest to us all, the spread of an epidemic.
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◦

Maximal Revenue with Minimal Calculus
Byron L. Walden (bwalden@math.scu.edu), Santa Clara University, Santa Clara, CA
95053-0290

A basic motivating example. If T is a right triangle and R is an inscribed rect-
angle with the right angle of T as one of its right angles, what is the maximum area
of R? This problem can be solved by several standard methods. However, the quickest
way is to treat the two triangular pieces of T outside of R as flaps and fold them on top
of R. (See Figure 1.) The flaps will exactly cover R if and only if P is the midpoint
of T ’s hypotenuse (since P is the midpoint of the hypotenuse if and only if 
y = y
and 
x = x). From Figure 1, we see also that Area (R) ≤ 1

2 Area (T ), with equality
holding if and only if P is the midpoint of T ’s hypotenuse.

Figure 1.

The same problem in economics. Given a linear demand curve (Figure 2), what
price will maximize the revenue?

Figure 2. A linear demand curve p = p(x)
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