You are here

Proof without Words: Every Triangle Has Infinitely Many Inscribed Equilateral Triangles

by Sidney H. Kung (University of North Florida)

This article originally appeared in:
Mathematics Magazine
April, 2002

Subject classification(s): Geometry and Topology | Geometric Proof
Applicable Course(s):

The author presents a visual proof that every triangle has infinitely many inscribed equilateral triangles. The technique begins with an equilateral triangle touching two sides and enlarges it until it hits the third side.

A pdf copy of the article can be viewed by clicking below. Since the copy is a faithful reproduction of the actual journal pages, the article may not begin at the top of the first page.

To open this file please click here.

These pdf files are furnished by JSTOR.

Classroom Capsules would not be possible without the contribution of JSTOR.

JSTOR provides online access to pdf copies of 512 journals, including all three print journals of the Mathematical Association of America: The American Mathematical Monthly, College Mathematics Journal, and Mathematics Magazine. We are grateful for JSTOR's cooperation in providing the pdf pages that we are using for Classroom Capsules.

Capsule Course Topic(s):
Average: 3 (5 votes)