The generator matrix
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X X
0 2X 0 0 0 0 0 0 0 0 0 0 0 0 2X 0 2X 2X 0 2X 2X 2X 0 2X 0 2X 2X 2X 2X 0 0 0 2X 0 2X 2X 0 2X 0 0 2X 2X 2X 2X 0 0 2X 2X 0 2X
0 0 2X 0 0 0 0 0 0 0 0 0 0 0 2X 2X 2X 0 2X 2X 0 0 2X 2X 2X 2X 0 2X 0 2X 0 2X 0 0 2X 2X 2X 0 2X 2X 2X 2X 0 0 0 2X 2X 0 2X 2X
0 0 0 2X 0 0 0 0 0 0 0 2X 2X 2X 0 0 0 0 2X 2X 2X 2X 2X 0 2X 0 0 2X 0 2X 2X 2X 0 2X 0 2X 2X 2X 0 0 0 2X 2X 0 2X 0 2X 0 2X 0
0 0 0 0 2X 0 0 0 2X 2X 2X 2X 2X 0 0 2X 2X 2X 0 2X 0 2X 2X 0 0 0 2X 2X 0 2X 2X 2X 2X 2X 2X 2X 0 2X 0 0 2X 0 0 2X 0 2X 2X 0 2X 2X
0 0 0 0 0 2X 0 2X 2X 2X 0 0 0 0 0 0 0 0 2X 2X 2X 2X 2X 0 0 2X 2X 0 2X 0 2X 2X 0 2X 2X 2X 0 0 2X 0 2X 0 0 2X 2X 0 0 2X 2X 0
0 0 0 0 0 0 2X 2X 0 2X 2X 0 2X 2X 0 0 0 0 2X 2X 0 0 2X 2X 0 0 2X 2X 0 0 2X 0 2X 0 2X 0 2X 0 2X 2X 0 2X 2X 0 0 2X 0 2X 2X 0
generates a code of length 50 over Z4[X]/(X^2+2) who´s minimum homogenous weight is 46.
Homogenous weight enumerator: w(x)=1x^0+32x^46+78x^48+832x^50+32x^52+32x^54+16x^56+1x^96
The gray image is a code over GF(2) with n=400, k=10 and d=184.
This code was found by Heurico 1.16 in 0.109 seconds.